题意
题目链接
Sol
正经做法不会,听lxl讲了一种很神奇的方法
我们考虑如果满足条件,那么需要具备什么条件
设mx为询问区间最大值,mn为询问区间最小值
mx - mn = (r - l) * k
区间和 = mn * len + \(\frac{n * (n - 1)}{2} k\)
\(\text{立方和} = \sum_{i = 1}^{len} (mn + (i - 1)k) ^2\)
第三条后面的可以直接推式子推出来(\(\sum_{i = 1}^n i^2 = \frac{n(n+1)(2n+1)}{6}\))
最后的/6可以直接乘一下然后ull自然溢出。
#include<bits/stdc++.h> #define ull unsigned long long #define LL long long #define Fin(x) {freopen(#x".in","r",stdin);}#define Fout(x) {freopen(#x".out","w",stdout);}using namespace std;const int MAXN = 4e6 + 10;inline int read() { char c = getchar(); int x = 0, f = 1; while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();} while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return x * f;}int N, M;#define ls k << 1#define rs k << 1 | 1struct { int l, r, mn, mx; ull s, s2;}T[MAXN];void update(int k) { T[k].mn = min(T[ls].mn, T[rs].mn); T[k].mx = max(T[ls].mx, T[rs].mx); T[k].s = T[ls].s + T[rs].s; T[k].s2 = T[ls].s2 + T[rs].s2;}void Build(int k, int ll, int rr) { T[k].l = ll; T[k].r = rr; if(ll == rr) {T[k].mn = T[k].mx = T[k].s = read(); T[k].s2 = T[k].s * T[k].s ; return ;} int mid = ll + rr >> 1; Build(ls, ll, mid); Build(rs, mid + 1, rr); update(k);}void Modify(int k, int p, int v) { if(T[k].l == T[k].r) {T[k].mn = T[k].mx = T[k].s = v; T[k].s2 = T[k].s * T[k].s; return ;} int mid = T[k].l + T[k].r >> 1; if(p <= mid) Modify(ls, p, v); if(p > mid) Modify(rs, p, v); update(k);}int QueryMn(int k, int ql, int qr) { if(ql <= T[k].l && T[k].r <= qr) return T[k].mn; int mid = T[k].l + T[k].r >> 1; if(ql > mid) return QueryMn(rs, ql, qr); else if(qr <= mid) return QueryMn(ls, ql, qr); else return min(QueryMn(ls, ql, qr), QueryMn(rs, ql, qr));}int QueryMx(int k, int ql, int qr) { if(ql <= T[k].l && T[k].r <= qr) return T[k].mx; int mid = T[k].l + T[k].r >> 1; if(ql > mid) return QueryMx(rs, ql, qr); else if(qr <= mid) return QueryMx(ls, ql, qr); else return max(QueryMx(ls, ql, qr), QueryMx(rs, ql, qr));}ull QuerySum(int k, int ql, int qr) { if(ql <= T[k].l && T[k].r <= qr) return T[k].s; int mid = T[k].l + T[k].r >> 1; if(ql > mid) return QuerySum(rs, ql, qr); else if(qr <= mid) return QuerySum(ls, ql, qr); else return QuerySum(ls, ql, qr) + QuerySum(rs, ql, qr);}ull QuerySum2(int k, int ql, int qr) { if(ql <= T[k].l && T[k].r <= qr) return T[k].s2; int mid = T[k].l + T[k].r >> 1; if(ql > mid) return QuerySum2(rs, ql, qr); else if(qr <= mid) return QuerySum2(ls, ql, qr); else return QuerySum2(ls, ql, qr) + QuerySum2(rs, ql, qr);}signed main() { N = read(); M = read(); Build(1, 1, N); int GG = 0; while(M--) { int opt = read(); if(opt == 1) { int x = read() ^ GG, y = read() ^ GG; Modify(1, x, y); } else { int l = read() ^ GG, r = read() ^ GG; ull k = read() ^ GG; ull n = r - l + 1, mn = QueryMn(1, l, r), mx = QueryMx(1, l, r); ull s = QuerySum(1, l, r), s2 = QuerySum2(1, l, r), ns = mn * n + n * (n - 1) * k / 2; ull gg = (6 * mn * mn * n) + (6 * mn * k * n * (n - 1)) + (k * k * (n - 1) * n * (2 * (n - 1) + 1)), gg2 = 6 * s2; if((mx - mn == (r - l) * k) && (mn * n + n * (n - 1) / 2 * k == s) && (gg == gg2)) puts("Yes"), GG++; else puts("No"); } } return 0;}/*5 31 3 2 5 62 2 2 233331 5 42 1 5 1*/