课程表

Spark 基础

Spark RDDs

Spark Streaming

Spark SQL

GraphX编程指南

工具箱
速查手册

Spark DStream的操作

当前位置:免费教程 » 数据库/运维 » Spark

与RDD类似,DStream也提供了自己的一系列操作方法,这些操作可以分成三类:普通的转换操作、窗口转换操作和输出操作。

普通的转换操作

普通的转换操作如下表所示:

转换

描述

map(func)

源 DStream的每个元素通过函数func返回一个新的DStream。

flatMap(func)

类似与map操作,不同的是每个输入元素可以被映射出0或者更多的输出元素。

filter(func)

在源DSTREAM上选择Func函数返回仅为true的元素,最终返回一个新的DSTREAM 。

repartition(numPartitions)

通过输入的参数numPartitions的值来改变DStream的分区大小。

union(otherStream)

返回一个包含源DStream与其他 DStream的元素合并后的新DSTREAM。

count()

对源DStream内部的所含有的RDD的元素数量进行计数,返回一个内部的RDD只包含一个元素的DStreaam。

reduce(func)

使用函数func(有两个参数并返回一个结果)将源DStream 中每个RDD的元素进行聚 合操作,返回一个内部所包含的RDD只有一个元素的新DStream。

countByValue()

计算DStream中每个RDD内的元素出现的频次并返回新的DStream[(K,Long)],其中K是RDD中元素的类型,Long是元素出现的频次。

reduceByKey(func, [numTasks])

当一个类型为(K,V)键值对的DStream被调用的时候,返回类型为类型为(K,V)键值对的新 DStream,其中每个键的值V都是使用聚合函数func汇总。注意:默认情况下,使用 Spark的默认并行度提交任务(本地模式下并行度为2,集群模式下位8),可以通过配置numTasks设置不同的并行任务数。

join(otherStream, [numTasks])

当被调用类型分别为(K,V)和(K,W)键值对的2个DStream时,返回类型为(K,(V,W))键值对的一个新 DSTREAM。

cogroup(otherStream, [numTasks])

当被调用的两个DStream分别含有(K, V) 和(K, W)键值对时,返回一个(K, Seq[V], Seq[W])类型的新的DStream。

transform(func)

通过对源DStream的每RDD应用RDD-to-RDD函数返回一个新的DStream,这可以用来在DStream做任意RDD操作。

updateStateByKey(func)

返回一个新状态的DStream,其中每个键的状态是根据键的前一个状态和键的新值应用给定函数func后的更新。这个方法可以被用来维持每个键的任何状态数据。

在上面列出的这些操作中,transform()方法和updateStateByKey()方法值得我们深入的探讨一下:

l  transform(func)操作

该transform操作(转换操作)连同其其类似的 transformWith操作允许DStream 上应用任意RDD-to-RDD函数。它可以被应用于未在 DStream API 中暴露任何的RDD操作。例如,在每批次的数据流与另一数据集的连接功能不直接暴露在DStream API 中,但可以轻松地使用transform操作来做到这一点,这使得DStream的功能非常强大。例如,你可以通过连接预先计算的垃圾邮件信息的输入数据流(可能也有Spark生成的),然后基于此做实时数据清理的筛选,如下面官方提供的伪代码所示。事实上,也可以在transform方法中使用机器学习和图形计算的算法。

l  updateStateByKey操作

该 updateStateByKey 操作可以让你保持任意状态,同时不断有新的信息进行更新。要使用此功能,必须进行两个步骤 :

(1)  定义状态 - 状态可以是任意的数据类型。

(2)  定义状态更新函数 - 用一个函数指定如何使用先前的状态和从输入流中获取的新值 更新状态。

让我们用一个例子来说明,假设你要进行文本数据流中单词计数。在这里,正在运行的计数是状态而且它是一个整数。我们定义了更新功能如下:

  1. def updateFunction(newValues:Seq[Int],runningCount:Option[Int]):Option[Int] = {
  2. val newCount=... //在之前运行的旧值基础上加上值得到新值
  3. Some(newCount)
  4. }

此函数应用于含有键值对的DStream中(如前面的示例中,在DStream中含有(word,1)键值对)。它会针对里面的每个元素(如wordCount中的word)调用一下更新函数,newValues是最新的值,runningCount是之前的值。

  1. val runningCounts=pairs.updateStateByKey[Int](updateFunction _)

窗口转换操作

Spark Streaming 还提供了窗口的计算,它允许你通过滑动窗口对数据进行转换,窗口转换操作如下:

转换

描述

window(windowLengthslideInterval)

返回一个基于源DStream的窗口批次计算后得到新的DStream。

countByWindow(windowLength,slideInterval)

返回基于滑动窗口的DStream中的元素的数量。

reduceByWindow(funcwindowLength,slideInterval)

基于滑动窗口对源DStream中的元素进行聚合操作,得到一个新的DStream。

reduceByKeyAndWindow(func,windowLength,slideInterval, [numTasks])

基于滑动窗口对(K,V)键值对类型的DStream中的值按K使用聚合函数func进行聚合操作,得到一个新的DStream。

reduceByKeyAndWindow(funcinvFunc,windowLength,slideInterval, [numTasks])

一个更高效的reduceByKkeyAndWindow()的实现版本,先对滑动窗口中新的时间间隔内数据增量聚合并移去最早的与新增数据量的时间间隔内的数据统计量。例如,计算t+4秒这个时刻过去5秒窗口的WordCount,那么我们可以将t+3时刻过去5秒的统计量加上[t+3,t+4]的统计量,在减去[t-2,t-1]的统计量,这种方法可以复用中间三秒的统计量,提高统计的效率。

countByValueAndWindow(windowLength,slideInterval, [numTasks])

基于滑动窗口计算源DStream中每个RDD内每个元素出现的频次并返回DStream[(K,Long)],其中K是RDD中元素的类型,Long是元素频次。与countByValue一样,reduce任务的数量可以通过一个可选参数进行配置。

clip_image020

在Spark Streaming中,数据处理是按批进行的,而数据采集是逐条进行的,因此在Spark Streaming中会先设置好批处理间隔(batch duration),当超过批处理间隔的时候就会把采集到的数据汇总起来成为一批数据交给系统去处理。

对于窗口操作而言,在其窗口内部会有N个批处理数据,批处理数据的大小由窗口间隔(window duration)决定,而窗口间隔指的就是窗口的持续时间,在窗口操作中,只有窗口的长度满足了才会触发批数据的处理。除了窗口的长度,窗口操作还有另一个重要的参数就是滑动间隔(slide duration),它指的是经过多长时间窗口滑动一次形成新的窗口,滑动窗口默认情况下和批次间隔的相同,而窗口间隔一般设置的要比它们两个大。在这里必须注意的一点是滑动间隔和窗口间隔的大小一定得设置为批处理间隔的整数倍。

如批处理间隔示意图所示,批处理间隔是1个时间单位,窗口间隔是3个时间单位,滑动间隔是2个时间单位。对于初始的窗口time 1-time 3,只有窗口间隔满足了才触发数据的处理。这里需要注意的一点是,初始的窗口有可能流入的数据没有撑满,但是随着时间的推进,窗口最终会被撑满。当每个2个时间单位,窗口滑动一次后,会有新的数据流入窗口,这时窗口会移去最早的两个时间单位的数据,而与最新的两个时间单位的数据进行汇总形成新的窗口(time3-time5)。

对于窗口操作,批处理间隔、窗口间隔和滑动间隔是非常重要的三个时间概念,是理解窗口操作的关键所在。

输出操作

Spark Streaming允许DStream的数据被输出到外部系统,如数据库或文件系统。由于输出操作实际上使transformation操作后的数据可以通过外部系统被使用,同时输出操作触发所有DStream的transformation操作的实际执行(类似于RDD操作)。以下表列出了目前主要的输出操作:

转换

描述

print()

在Driver中打印出DStream中数据的前10个元素。

saveAsTextFiles(prefix, [suffix])

将DStream中的内容以文本的形式保存为文本文件,其中每次批处理间隔内产生的文件以prefix-TIME_IN_MS[.suffix]的方式命名。

saveAsObjectFiles(prefix, [suffix])

将DStream中的内容按对象序列化并且以SequenceFile的格式保存。其中每次批处理间隔内产生的文件以prefix-TIME_IN_MS[.suffix]的方式命名。

saveAsHadoopFiles(prefix, [suffix])

将DStream中的内容以文本的形式保存为Hadoop文件,其中每次批处理间隔内产生的文件以prefix-TIME_IN_MS[.suffix]的方式命名。

foreachRDD(func)

最基本的输出操作,将func函数应用于DStream中的RDD上,这个操作会输出数据到外部系统,比如保存RDD到文件或者网络数据库等。需要注意的是func函数是在运行该streaming应用的Driver进程里执行的。

dstream.foreachRDD是一个非常强大的输出操作,它允将许数据输出到外部系统。但是 ,如何正确高效地使用这个操作是很重要的,下面展示了如何去避免一些常见的错误。

通常将数据写入到外部系统需要创建一个连接对象(如 TCP连接到远程服务器),并用它来发送数据到远程系统。出于这个目的,开发者可能在不经意间在Spark driver端创建了连接对象,并尝试使用它保存RDD中的记录到Spark worker上,如下面代码:

  1. dstream.foreachRDD { rdd =>
  2. val connection = createNewConnection() //定义驱动
  3. rdd.foreach { record =>
  4. connection.send(record)
  5. }
  6. }

这是不正确的,这需要连接对象进行序列化并从Driver端发送到Worker上。连接对象很少在不同机器间进行这种操作,此错误可能表现为序列化错误(连接对不可序列化),初始化错误(连接对象在需要在Worker 上进行需要初始化) 等等,正确的解决办法是在worker上创建的连接对象。

通常情况下,创建一个连接对象有时间和资源开销。因此,创建和销毁的每条记录的连接对象可能招致不必要的资源开销,并显著降低系统整体的吞吐量 。一个更好的解决方案是使用rdd.foreachPartition方法创建一个单独的连接对象,然后使用该连接对象输出的所有RDD分区中的数据到外部系统。

 这缓解了创建多条记录连接的开销。最后,还可以进一步通过在多个RDDs/ batches上重用连接对象进行优化。一个保持连接对象的静态池可以重用在多个批处理的RDD上将其输出到外部系统,从而进一步降低了开销。

 需要注意的是,在静态池中的连接应该按需延迟创建,这样可以更有效地把数据发送到外部系统。另外需要要注意的是:DStreams延迟执行的,就像RDD的操作是由actions触发一样。默认情况下,输出操作会按照它们在Streaming应用程序中定义的顺序一个个执行。

转载本站内容时,请务必注明来自W3xue,违者必究。
 友情链接:直通硅谷  点职佳  北美留学生论坛

本站QQ群:前端 618073944 | Java 606181507 | Python 626812652 | C/C++ 612253063 | 微信 634508462 | 苹果 692586424 | C#/.net 182808419 | PHP 305140648 | 运维 608723728

W3xue 的所有内容仅供测试,对任何法律问题及风险不承担任何责任。通过使用本站内容随之而来的风险与本站无关。
关于我们  |  意见建议  |  捐助我们  |  报错有奖  |  广告合作、友情链接(目前9元/月)请联系QQ:27243702 沸活量
皖ICP备17017327号-2 皖公网安备34020702000426号