课程表

Spark 基础

Spark RDDs

Spark Streaming

Spark SQL

GraphX编程指南

工具箱
速查手册

DStream 持久化和调优

当前位置:免费教程 » 数据库/运维 » Spark

持久化

与RDD一样,DStream同样也能通过persist()方法将数据流存放在内存中,默认的持久化方式是MEMORY_ONLY_SER,也就是在内存中存放数据同时序列化的方式,这样做的好处是遇到需要多次迭代计算的程序时,速度优势十分的明显。而对于一些基于窗口的操作,如reduceByWindow、reduceByKeyAndWindow,以及基于状态的操作,如updateStateBykey,其默认的持久化策略就是保存在内存中。

对于来自网络的数据源(Kafka、Flume、sockets等),默认的持久化策略是将数据保存在两台机器上,这也是为了容错性而设计的。

另外,对于窗口和有状态的操作必须checkpoint,通过StreamingContext的checkpoint来指定目录,通过 Dtream的checkpoint指定间隔时间,间隔必须是滑动间隔(slide interval)的倍数。

性能调优

1.  优化运行时间

l 增加并行度 确保使用整个集群的资源,而不是把任务集中在几个特定的节点上。对于包含shuffle的操作,增加其并行度以确保更为充分地使用集群资源;

l 减少数据序列化,反序列化的负担 Spark Streaming默认将接受到的数据序列化后存储,以减少内存的使用。但是序列化和反序列话需要更多的CPU时间,因此更加高效的序列化方式(Kryo)和自定义的系列化接口可以更高效地使用CPU;

l 设置合理的batch duration(批处理时间间) 在Spark Streaming中,Job之间有可能存在依赖关系,后面的Job必须确保前面的作业执行结束后才能提交。若前面的Job执行的时间超出了批处理时间间隔,那么后面的Job就无法按时提交,这样就会进一步拖延接下来的Job,造成后续Job的阻塞。因此设置一个合理的批处理间隔以确保作业能够在这个批处理间隔内结束时必须的;

l  减少因任务提交和分发所带来的负担 通常情况下,Akka框架能够高效地确保任务及时分发,但是当批处理间隔非常小(500ms)时,提交和分发任务的延迟就变得不可接受了。使用Standalone和Coarse-grained Mesos模式通常会比使用Fine-grained Mesos模式有更小的延迟。

2.  优化内存使用

l控制batch size(批处理间隔内的数据量) Spark Streaming会把批处理间隔内接收到的所有数据存放在Spark内部的可用内存区域中,因此必须确保当前节点Spark的可用内存中少能容纳这个批处理时间间隔内的所有数据,否则必须增加新的资源以提高集群的处理能力;

l及时清理不再使用的数据 前面讲到Spark Streaming会将接受的数据全部存储到内部可用内存区域中,因此对于处理过的不再需要的数据应及时清理,以确保Spark Streaming有富余的可用内存空间。通过设置合理的spark.cleaner.ttl时长来及时清理超时的无用数据,这个参数需要小心设置以免后续操作中所需要的数据被超时错误处理;

l观察及适当调整GC策略 GC会影响Job的正常运行,可能延长Job的执行时间,引起一系列不可预料的问题。观察GC的运行情况,采用不同的GC策略以进一步减小内存回收对Job运行的影响。

转载本站内容时,请务必注明来自W3xue,违者必究。
 友情链接:直通硅谷  点职佳  北美留学生论坛

本站QQ群:前端 618073944 | Java 606181507 | Python 626812652 | C/C++ 612253063 | 微信 634508462 | 苹果 692586424 | C#/.net 182808419 | PHP 305140648 | 运维 608723728

W3xue 的所有内容仅供测试,对任何法律问题及风险不承担任何责任。通过使用本站内容随之而来的风险与本站无关。
关于我们  |  意见建议  |  捐助我们  |  报错有奖  |  广告合作、友情链接(目前9元/月)请联系QQ:27243702 沸活量
皖ICP备17017327号-2 皖公网安备34020702000426号