1. 说明
本文基于:spark-2.4.0-hadoop2.7-高可用(HA)安装部署
2. 启动Spark Shell
在任意一台有spark的机器上执行
- 1 # --master spark://mini02:7077 连接spark的master,这个master的状态为alive,而不是standby
- 2 # --total-executor-cores 2 总共占用2核CPU
- 3 # --executor-memory 512m 每个woker占用512m内存
- 4 [yun@mini03 ~]$ spark-shell --master spark://mini02:7077 --total-executor-cores 2 --executor-memory 512m
- 5 2018-11-25 12:07:39 WARN NativeCodeLoader:62 - Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
- 6 Setting default log level to "WARN".
- 7 To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
- 8 Spark context Web UI available at http://mini03:4040
- 9 Spark context available as 'sc' (master = spark://mini02:7077, app id = app-20181125120746-0001).
- 10 Spark session available as 'spark'.
- 11 Welcome to
- 12 ____ __
- 13 / __/__ ___ _____/ /__
- 14 _\ \/ _ \/ _ `/ __/ '_/
- 15 /___/ .__/\_,_/_/ /_/\_\ version 2.4.0
- 16 /_/
- 17
- 18 Using Scala version 2.11.12 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_112)
- 19 Type in expressions to have them evaluated.
- 20 Type :help for more information.
- 21
- 22 scala> sc
- 23 res0: org.apache.spark.SparkContext = org.apache.spark.SparkContext@77e1b84c
注意:
如果启动spark shell时没有指定master地址,但是也可以正常启动spark shell和执行spark shell中的程序,其实是启动了spark的local模式,该模式仅在本机启动一个进程,没有与集群建立联系。
2.1. 相关截图

3. 执行第一个spark程序
该算法是利用蒙特?卡罗算法求PI
- 1 [yun@mini03 ~]$ spark-submit 2 --class org.apache.spark.examples.SparkPi 3 --master spark://mini02:7077 \
- 4 --total-executor-cores 2 5 --executor-memory 512m 6 /app/spark/examples/jars/spark-examples_2.11-2.4.0.jar 100
- 7 # 打印的信息如下:
- 8 2018-11-25 12:25:42 WARN NativeCodeLoader:62 - Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
- 9 2018-11-25 12:25:43 INFO SparkContext:54 - Running Spark version 2.4.0
- 10 ………………
- 11 2018-11-25 12:25:49 INFO TaskSetManager:54 - Finished task 97.0 in stage 0.0 (TID 97) in 20 ms on 172.16.1.14 (executor 0) (98/100)
- 12 2018-11-25 12:25:49 INFO TaskSetManager:54 - Finished task 98.0 in stage 0.0 (TID 98) in 26 ms on 172.16.1.13 (executor 1) (99/100)
- 13 2018-11-25 12:25:49 INFO TaskSetManager:54 - Finished task 99.0 in stage 0.0 (TID 99) in 25 ms on 172.16.1.14 (executor 0) (100/100)
- 14 2018-11-25 12:25:49 INFO TaskSchedulerImpl:54 - Removed TaskSet 0.0, whose tasks have all completed, from pool
- 15 2018-11-25 12:25:49 INFO DAGScheduler:54 - ResultStage 0 (reduce at SparkPi.scala:38) finished in 3.881 s
- 16 2018-11-25 12:25:49 INFO DAGScheduler:54 - Job 0 finished: reduce at SparkPi.scala:38, took 4.042591 s
- 17 Pi is roughly 3.1412699141269913
- 18 ………………
4. Spark shell求Word count 【结合Hadoop】
1、启动Hadoop
2、将文件放到Hadoop中
- 1 [yun@mini05 sparkwordcount]$ cat wc.info
- 2 zhang linux
- 3 linux tom
- 4 zhan kitty
- 5 tom linux
- 6 [yun@mini05 sparkwordcount]$ hdfs dfs -ls /
- 7 Found 4 items
- 8 drwxr-xr-x - yun supergroup 0 2018-11-16 11:36 /hbase
- 9 drwx------ - yun supergroup 0 2018-11-14 23:42 /tmp
- 10 drwxr-xr-x - yun supergroup 0 2018-11-14 23:42 /wordcount
- 11 -rw-r--r-- 3 yun supergroup 16402010 2018-11-14 23:39 /zookeeper-3.4.5.tar.gz
- 12 [yun@mini05 sparkwordcount]$ hdfs dfs -mkdir -p /sparkwordcount/input
- 13 [yun@mini05 sparkwordcount]$ hdfs dfs -put wc.info /sparkwordcount/input/1.info
- 14 [yun@mini05 sparkwordcount]$ hdfs dfs -put wc.info /sparkwordcount/input/2.info
- 15 [yun@mini05 sparkwordcount]$ hdfs dfs -put wc.info /sparkwordcount/input/3.info
- 16 [yun@mini05 sparkwordcount]$ hdfs dfs -put wc.info /sparkwordcount/input/4.info
- 17 [yun@mini05 sparkwordcount]$ hdfs dfs -ls /sparkwordcount/input
- 18 Found 4 items
- 19 -rw-r--r-- 3 yun supergroup 45 2018-11-25 14:41 /sparkwordcount/input/1.info
- 20 -rw-r--r-- 3 yun supergroup 45 2018-11-25 14:41 /sparkwordcount/input/2.info
- 21 -rw-r--r-- 3 yun supergroup 45 2018-11-25 14:41 /sparkwordcount/input/3.info
- 22 -rw-r--r-- 3 yun supergroup 45 2018-11-25 14:41 /sparkwordcount/input/4.info
3、进入spark shell命令行,并计算
- 1 [yun@mini03 ~]$ spark-shell --master spark://mini02:7077 --total-executor-cores 2 --executor-memory 512m
- 2 # 计算完毕后,打印在命令行
- 3 scala> sc.textFile("hdfs://mini01:9000/sparkwordcount/input").flatMap(_.split(" ")).map((_, 1)).reduceByKey(_+_).sortBy(_._2, false).collect
- 4 res6: Array[(String, Int)] = Array((linux,12), (tom,8), (kitty,4), (zhan,4), ("",4), (zhang,4))
- 5 # 计算完毕后,保存在HDFS【因为有多个文件组成,则有多个reduce,所以输出有多个文件】
- 6 scala> sc.textFile("hdfs://mini01:9000/sparkwordcount/input").flatMap(_.split(" ")).map((_, 1)).reduceByKey(_+_).sortBy(_._2, false).saveAsTextFile("hdfs://mini01:9000/sparkwordcount/output")
- 7 # 计算完毕后,保存在HDFS【将reduce设置为1,输出就只有一个文件】
- 8 scala> sc.textFile("hdfs://mini01:9000/sparkwordcount/input").flatMap(_.split(" ")).map((_, 1)).reduceByKey(_+_, 1).sortBy(_._2, false).saveAsTextFile("hdfs://mini01:9000/sparkwordcount/output1")
4、在HDFS的查看结算结果
- 1 [yun@mini05 sparkwordcount]$ hdfs dfs -ls /sparkwordcount/
- 2 Found 2 items
- 3 drwxr-xr-x - yun supergroup 0 2018-11-25 15:03 /sparkwordcount/input
- 4 drwxr-xr-x - yun supergroup 0 2018-11-25 15:05 /sparkwordcount/output
- 5 drwxr-xr-x - yun supergroup 0 2018-11-25 15:07 /sparkwordcount/output1
- 6 [yun@mini05 sparkwordcount]$ hdfs dfs -ls /sparkwordcount/output
- 7 Found 5 items
- 8 -rw-r--r-- 3 yun supergroup 0 2018-11-25 15:05 /sparkwordcount/output/_SUCCESS
- 9 -rw-r--r-- 3 yun supergroup 0 2018-11-25 15:05 /sparkwordcount/output/part-00000
- 10 -rw-r--r-- 3 yun supergroup 11 2018-11-25 15:05 /sparkwordcount/output/part-00001
- 11 -rw-r--r-- 3 yun supergroup 8 2018-11-25 15:05 /sparkwordcount/output/part-00002
- 12 -rw-r--r-- 3 yun supergroup 34 2018-11-25 15:05 /sparkwordcount/output/part-00003
- 13 [yun@mini05 sparkwordcount]$
- 14 [yun@mini05 sparkwordcount]$ hdfs dfs -cat /sparkwordcount/output/part*
- 15 (linux,12)
- 16 (tom,8)
- 17 (,4)
- 18 (zhang,4)
- 19 (kitty,4)
- 20 (zhan,4)
- 21 ###############################################
- 22 [yun@mini05 sparkwordcount]$ hdfs dfs -ls /sparkwordcount/output1
- 23 Found 2 items
- 24 -rw-r--r-- 3 yun supergroup 0 2018-11-25 15:07 /sparkwordcount/output1/_SUCCESS
- 25 -rw-r--r-- 3 yun supergroup 53 2018-11-25 15:07 /sparkwordcount/output1/part-00000
- 26 [yun@mini05 sparkwordcount]$ hdfs dfs -cat /sparkwordcount/output1/part-00000
- 27 (linux,12)
- 28 (tom,8)
- 29 (,4)
- 30 (zhang,4)
- 31 (kitty,4)
- 32 (zhan,4)