Flume+Kafka+Storm+Hbase+HDSF+Poi整合
需求:
针对一个网站,我们需要根据用户的行为记录日志信息,分析对我们有用的数据。
举例:这个网站www.hongten.com(当然这是一个我虚拟的电商网站),用户在这个网站里面可以有很多行为,比如注册,登录,查看,点击,双击,购买东西,加入购物车,添加记录,修改记录,删除记录,评论,登出等一系列我们熟悉的操作。这些操作都被记录在日志信息里面。我们要对日志信息进行分析。
本文中,我们对购买东西和加入购物车两个行为进行分析。然后生成相应的报表,这样我们可以通过报表查看用户在什么时候喜欢购买东西,什么时候喜欢加入购物车,从而,在相应的时间采取行动,激烈用户购买东西,推荐商品给用户加入购物车(加入购物车,这属于潜在购买用户)。
毕竟网站盈利才是我们希望达到的目的,对吧。
1.抽象用户行为
- // 用户的action
- public static final String[] USER_ACTION = { "Register", "Login", "View", "Click", "Double_Click", "Buy", "Shopping_Car", "Add", "Edit", "Delete", "Comment", "Logout" };
2.日志格式定义
- 115.19.62.102 海南 2018-12-20 1545286960749 1735787074662918890 www.hongten.com Edit
- 27.177.45.84 新疆 2018-12-20 1545286962255 6667636903937987930 www.hongten.com Delete
- 176.54.120.96 宁夏 2018-12-20 1545286962256 6988408478348165495 www.hongten.com Comment
- 175.117.33.187 辽宁 2018-12-20 1545286962257 8411202446705338969 www.hongten.com Shopping_Car
- 17.67.62.213 天津 2018-12-20 1545286962258 7787584752786413943 www.hongten.com Add
- 137.81.41.9 海南 2018-12-20 1545286962259 6218367085234099455 www.hongten.com Shopping_Car
- 125.187.107.57 山东 2018-12-20 1545286962260 3358658811146151155 www.hongten.com Double_Click
- 104.167.205.87 内蒙 2018-12-20 1545286962261 2303468282544965471 www.hongten.com Shopping_Car
- 64.106.149.83 河南 2018-12-20 1545286962262 8422202443986582525 www.hongten.com Delete
- 138.22.156.183 浙江 2018-12-20 1545286962263 7649154147863130337 www.hongten.com Shopping_Car
- 41.216.103.31 河北 2018-12-20 1545286962264 6785302169446728008 www.hongten.com Shopping_Car
- 132.144.93.20 广东 2018-12-20 1545286962265 6444575166009004406 www.hongten.com Add
日志格式:
- //log fromat
- String log = ip + "\t" + address + "\t" + d + "\t" + timestamp + "\t" + userid + "\t" + Common.WEB_SITE + "\t" + action;
3.系统架构

4.报表样式
由于我采用的是随机生成数据,所有,我们看到的结果呈现线性增长
这里我只是实现了一个小时的报表,当然,也可以做一天,一个季度,全年,三年,五年的报表,可以根据实际需求实现即可。

5.组件分布情况
我总共搭建了4个节点node1,node2,node3,node4(注: 4个节点上面都要有JDK)
Zookeeper安装在node1,node2,nod3
Hadoop集群在node1,node2,nod3,node4
Hbase集群在node1,node2,nod3,node4
Flume安装在node2
Kafka安装在node1,node2,node3
Storm安装在node1,node2,node3

6.具体实现
6.1.配置Flume
- --从node2
- cd flumedir
- vi flume2kafka
- --node2配置如下
- a1.sources = r1
- a1.sinks = k1
- a1.channels = c1
- # Describe/configure the source
- a1.sources.r1.type = avro
- a1.sources.r1.bind = node2
- a1.sources.r1.port = 41414
- # Describe the sink
- a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
- a1.sinks.k1.topic = all_my_log
- a1.sinks.k1.brokerList = node1:9092,node2:9092,node3:9092
- a1.sinks.k1.requiredAcks = 1
- a1.sinks.k1.batchSize = 20
- # Use a channel which buffers events in memory
- a1.channels.c1.type = memory
- a1.channels.c1.capacity = 1000000
- a1.channels.c1.transactionCapacity = 10000
- # Bind the source and sink to the channel
- a1.sources.r1.channels = c1
- a1.sinks.k1.channel = c1
- :wq
6.2.启动Zookeeper
- --关闭防火墙node1,node2,node3,node4
- service iptables stop
- --启动Zookeeper,在node1,node2,node3
- zkServer.sh start
6.3.启动Kafka
- --启动kafka
- --分别进入node1,node2,node3
- cd /root/kafka/kafka_2.10-0.8.2.2
- ./start-kafka.sh
6.4.启动Flume服务
- --进入node2,启动
- cd /root/flumedir
- flume-ng agent -n a1 -c conf -f flume2kafka -Dflume.root.logger=DEBUG,console
6.5.产生日志信息并写入到Flume
运行java 代码,产生日志信息并写入到Flume服务器
- package com.b510.big.data.flume.client;
- import java.nio.charset.Charset;
- import java.text.SimpleDateFormat;
- import java.util.Date;
- import java.util.Random;
- import java.util.concurrent.ExecutorService;
- import java.util.concurrent.Executors;
- import java.util.concurrent.TimeUnit;
- import org.apache.flume.Event;
- import org.apache.flume.EventDeliveryException;
- import org.apache.flume.api.RpcClient;
- import org.apache.flume.api.RpcClientFactory;
- import org.apache.flume.event.EventBuilder;
- /**
- * @author Hongten
- *
- * 功能: 模拟产生用户日志信息,并且向Flume发送数据
- */
- public class FlumeClient {
- public static void main(String[] args) {
- ExecutorService exec = Executors.newCachedThreadPool();
- exec.execute(new GenerateDataAndSend2Flume());
- exec.shutdown();
- }
- }
- class GenerateDataAndSend2Flume implements Runnable {
- FlumeRPCClient flumeRPCClient;
- static Random random = new Random();
- GenerateDataAndSend2Flume() {
- // 初始化RPC客户端
- flumeRPCClient = new FlumeRPCClient();
- flumeRPCClient.init(Common.FLUME_HOST_NAME, Common.FLUME_PORT);
- }
- @Override
- public void run() {
- while (true) {
- Date date = new Date();
- SimpleDateFormat simpleDateFormat = new SimpleDateFormat(Common.DATE_FORMAT_YYYYDDMM);
- String d = simpleDateFormat.format(date);
- Long timestamp = new Date().getTime();
- // ip地址生成
- String ip = random.nextInt(Common.MAX_IP_NUMBER) + "." + random.nextInt(Common.MAX_IP_NUMBER) + "." + random.nextInt(Common.MAX_IP_NUMBER) + "." + random.nextInt(Common.MAX_IP_NUMBER);
- // ip地址对应的address(这里是为了构造数据,并没有按照真实的ip地址,找到对应的address)
- String address = Common.ADDRESS[random.nextInt(Common.ADDRESS.length)];
- Long userid = Math.abs(random.nextLong());
- String action = Common.USER_ACTION[random.nextInt(Common.USER_ACTION.length)];
- // 日志信息构造
- // example : 199.80.45.117 云南 2018-12-20 1545285957720 3086250439781555145 www.hongten.com Buy
- String data = ip + "\t" + address + "\t" + d + "\t" + timestamp + "\t" + userid + "\t" + Common.WEB_SITE + "\t" + action;
- //System.out.println(data);
- // 往Flume发送数据
- flumeRPCClient.sendData2Flume(data);
- try {
- TimeUnit.MICROSECONDS.sleep(random.nextInt(1000));
- } catch (InterruptedException e) {
- flumeRPCClient.cleanUp();
- System.out.println("interrupted exception : " + e);
- }
- }
- }
- }
- class FlumeRPCClient {
- private RpcClient client;
- private String hostname;
- private int port;
- public void init(String hostname, int port) {
- this.hostname = hostname;
- this.port = port;
- this.client = getRpcClient(hostname, port);
- }
- public void sendData2Flume(String data) {
- Event event = EventBuilder.withBody(data, Charset.forName(Common.CHAR_FORMAT));
- try {
- client.append(event);
- } catch (EventDeliveryException e) {
- cleanUp();
- client = null;
- client = getRpcClient(hostname, port);
- }
- }
- public RpcClient getRpcClient(String hostname, int port) {
- return RpcClientFactory.getDefaultInstance(hostname, port);
- }
- public void cleanUp() {
- // Close the RPC connection
- client.close();
- }
- }
- // 所有的常量定义
- class Common {
- public static final String CHAR_FORMAT = "UTF-8";
- public static final String DATE_FORMAT_YYYYDDMM = "yyyy-MM-dd";
- // this is a test web site
- public static final String WEB_SITE = "www.hongten.com";
- // 用户的action
- public static final String[] USER_ACTION = { "Register", "Login", "View", "Click", "Double_Click", "Buy", "Shopping_Car", "Add", "Edit", "Delete", "Comment", "Logout" };
- public static final int MAX_IP_NUMBER = 224;
- // ip所对应的地址
- public static String[] ADDRESS = { "北京", "天津", "上海", "广东", "重庆", "河北", "山东", "河南", "云南", "山西", "甘肃", "安徽", "福建", "黑龙江", "海南", "四川", "贵州", "宁夏", "新疆", "湖北", "湖南", "山西", "辽宁", "吉林", "江苏", "浙江", "青海", "江西", "西藏", "内蒙", "广西", "香港", "澳门", "台湾", };
- // Flume conf
- public static final String FLUME_HOST_NAME = "node2";
- public static final int FLUME_PORT = 41414;
- }
6.6.监听Kafka
- --进入node3,启动kafka消费者
- cd /home/kafka-2.10/bin
- ./kafka-console-consumer.sh --zookeeper node1,node2,node3 --from-beginning --topic all_my_log
运行效果:
- 168.208.193.207 安徽 2018-12-20 1545287646527 5462770148222682599 www.hongten.com Login
- 103.143.79.127 新疆 2018-12-20 1545287646529 3389475301916412717 www.hongten.com Login
- 111.208.80.39 山东 2018-12-20 1545287646531 535601622597096753 www.hongten.com Shopping_Car
- 105.30.86.46 四川 2018-12-20 1545287646532 7825340079790811845 www.hongten.com Login
- 205.55.33.74 新疆 2018-12-20 1545287646533 4228838365367235561 www.hongten.com Logout
- 34.44.60.134 安徽 2018-12-20 1545287646536 702584874247456732 www.hongten.com Double_Click
- 154.169.15.145 广东 2018-12-20 1545287646537 1683351753576425036 www.hongten.com View
- 126.28.192.28 湖南 2018-12-20 1545287646538 8319814684518483148 www.hongten.com Edit
- 5.140.156.73 台湾 2018-12-20 1545287646539 7432409906375230025 www.hongten.com Logout
- 72.175.210.95 西藏 2018-12-20 1545287646540 5233707593244910849 www.hongten.com View
- 121.25.190.25 广西 2018-12-20 1545287646541 268200251881841673 www.hongten.com Buy
6.7.在Kafka创建Topic
- --进入node1,创建一个topic:filtered_log
- --设置3个partitions
- --replication-factor=3
- ./kafka-topics.sh --zookeeper node1,node2,node3 --create --topic filtered_log --partitions 3 --replication-factor 3
6.8.Storm清洗数据
- Storm从Kafka消费数据
- Storm对数据进行筛选(Buy-已经购买,Shopping_Car-潜在购买)
- Storm把筛选的数据放入到Kafka
- package com.b510.big.data.storm.process;
- import java.util.ArrayList;
- import java.util.List;
- import java.util.Properties;
- import storm.kafka.KafkaSpout;
- import storm.kafka.SpoutConfig;
- import storm.kafka.StringScheme;
- import storm.kafka.ZkHosts;
- import storm.kafka.bolt.KafkaBolt;
- import storm.kafka.bolt.mapper.FieldNameBasedTupleToKafkaMapper;
- import storm.kafka.bolt.selector.DefaultTopicSelector;
- import backtype.storm.Config;
- import backtype.storm.LocalCluster;
- import backtype.storm.StormSubmitter;
- import backtype.storm.generated.AlreadyAliveException;
- import backtype.storm.generated.InvalidTopologyException;
- import backtype.storm.spout.SchemeAsMultiScheme;
- import backtype.storm.topology.BasicOutputCollector;
- import backtype.storm.topology.OutputFieldsDeclarer;
- import backtype.storm.topology.TopologyBuilder;
- import backtype.storm.topology.base.BaseBasicBolt;
- import backtype.storm.tuple.Fields;
- import backtype.storm.tuple.Tuple;
- import backtype.storm.tuple.Values;
- public class LogFilterTopology {
- public static void main(String[] args) {
- ZkHosts zkHosts = new ZkHosts(Common.ZOOKEEPER_QUORUM);
- //Spout从'filtered_log' topic里面获取数据
- SpoutConfig spoutConfig = new SpoutConfig(zkHosts, Common.ALL_MY_LOG_TOPIC, Common.ZOOKEEPER_ROOT, Common.ZOOKEEPER_ID);
- List<String> zkServers = new ArrayList<>();
- for (String host : zkHosts.brokerZkStr.split(",")) {
- zkServers.add(host.split(":")[0]);
- }
- spoutConfig.zkServers = zkServers;
- spoutConfig.zkPort = Common.ZOOKEEPER_PORT;
- spoutConfig.forceFromStart = true;
- spoutConfig.socketTimeoutMs = 60 * 60 * 1000;
- spoutConfig.scheme = new SchemeAsMultiScheme(new StringScheme());
- // 创建KafkaSpout
- KafkaSpout kafkaSpout = new KafkaSpout(spoutConfig);
- TopologyBuilder builder = new TopologyBuilder();
- // Storm从Kafka消费数据
- builder.setSpout(Common.KAFKA_SPOUT, kafkaSpout, 3);
- // Storm对数据进行筛选(Buy-已经购买,Shopping_Car-潜在购买)
- builder.setBolt(Common.FILTER_BOLT, new FilterBolt(), 8).shuffleGrouping(Common.KAFKA_SPOUT);
- // 创建KafkaBolt
- @SuppressWarnings({ "unchecked", "rawtypes" })
- KafkaBolt kafkaBolt = new KafkaBolt().withTopicSelector(new DefaultTopicSelector(Common.FILTERED_LOG_TOPIC)).withTupleToKafkaMapper(new FieldNameBasedTupleToKafkaMapper());
- // Storm把筛选的数据放入到Kafka
- builder.setBolt(Common.KAFKA_BOLT, kafkaBolt, 2).shuffleGrouping(Common.FILTER_BOLT);
- Properties props = new Properties();
- props.put("metadata.broker.list", Common.STORM_METADATA_BROKER_LIST);
- props.put("request.required.acks", Common.STORM_REQUEST_REQUIRED_ACKS);
- props.put("serializer.class", Common.STORM_SERILIZER_CLASS);
- Config conf = new Config();
- conf.put("kafka.broker.properties", props);
- conf.put(Config.STORM_ZOOKEEPER_SERVERS, zkServers);
- if (args == null || args.length == 0) {
- // 本地方式运行
- LocalCluster localCluster = new LocalCluster();
- localCluster.submitTopology("storm-kafka-topology", conf, builder.createTopology());
- } else {
- // 集群方式运行
- conf.setNumWorkers(3);
- try {
- StormSubmitter.submitTopology(args[0], conf, builder.createTopology());
- } catch (AlreadyAliveException | InvalidTopologyException e) {
- System.out.println("error : " + e);
- }
- }
- }
- }
- class FilterBolt extends BaseBasicBolt {
- private static final long serialVersionUID = 1L;
- @Override
- public void execute(Tuple input, BasicOutputCollector collector) {
- String logStr = input.getString(0);
- // 只针对我们感兴趣的关键字进行过滤
- // 这里我们过滤包含'Buy', 'Shopping_Car'的日志信息
- if (logStr.contains(Common.KEY_WORD_BUY) || logStr.contains(Common.KEY_WORD_SHOPPING_CAR)) {
- collector.emit(new Values(logStr));
- }
- }
- @Override
- public void declareOutputFields(OutputFieldsDeclarer declarer) {
- declarer.declare(new Fields(FieldNameBasedTupleToKafkaMapper.BOLT_MESSAGE));
- }
- }
- class Common {
- public static final String ALL_MY_LOG_TOPIC = "all_my_log";
- public static final String FILTERED_LOG_TOPIC = "filtered_log";
-
- public static final String DATE_FORMAT_YYYYDDMMHHMMSS = "yyyyMMddHHmmss";
- public static final String DATE_FORMAT_HHMMSS = "HHmmss";
- public static final String DATE_FORMAT_HHMMSS_DEFAULT_VALUE = "000001";
- public static final String HBASE_ZOOKEEPER_LIST = "node1:2888,node2:2888,node3:2888";
- public static final int ZOOKEEPER_PORT = 2181;
- public static final String ZOOKEEPER_QUORUM = "node1:" + ZOOKEEPER_PORT + ",node2:" + ZOOKEEPER_PORT + ",node3:" + ZOOKEEPER_PORT + "";
- public static final String ZOOKEEPER_ROOT = "/MyKafka";
- public static final String ZOOKEEPER_ID = "MyTrack";
- public static final String KAFKA_SPOUT = "kafkaSpout";
- public static final String FILTER_BOLT = "filterBolt";
- public static final String PROCESS_BOLT = "processBolt";
- public static final String HBASE_BOLT = "hbaseBolt";
- public static final String KAFKA_BOLT = "kafkaBolt";
- // Storm Conf
- public static final String STORM_METADATA_BROKER_LIST = "node1:9092,node2:9092,node3:9092";
- public static final String STORM_REQUEST_REQUIRED_ACKS = "1";
- public static final String STORM_SERILIZER_CLASS = "kafka.serializer.StringEncoder";
- // key word
- public static final String KEY_WORD_BUY = "Buy";
- public static final String KEY_WORD_SHOPPING_CAR = "Shopping_Car";
-
- //hbase
- public static final String TABLE_USER_ACTION = "t_user_actions";
- public static final String COLUMN_FAMILY = "cf";
- //间隔多少秒写入Hbase一次
- public static final int WRITE_RECORD_TO_TABLE_PER_SECOND = 1;
- public static final int TABLE_MAX_VERSION = (60/WRITE_RECORD_TO_TABLE_PER_SECOND) * 60 * 24;
- }
6.9.监听Kafka
- --进入node3,启动kafka消费者
- cd /home/kafka-2.10/bin
- ./kafka-console-consumer.sh --zookeeper node1,node2,node3 --from-beginning --topic filtered_log
效果:
- 87.26.135.185 黑龙江 2018-12-20 1545290594658 7290881731606227972 www.hongten.com Shopping_Car
- 60.96.96.38 青海 2018-12-20 1545290594687 6935901257286057015 www.hongten.com Shopping_Car
- 43.159.110.193 江苏 2018-12-20 1545290594727 7096698224110515553 www.hongten.com Shopping_Car
- 21.103.139.11 山西 2018-12-20 1545290594693 7805867078876194442 www.hongten.com Shopping_Car
- 139.51.213.184 广东 2018-12-20 1545290594729 8048796865619113514 www.hongten.com Buy
- 58.213.148.89 河北 2018-12-20 1545290594708 5176551342435592748 www.hongten.com Buy
- 36.205.221.116 湖南 2018-12-20 1545290594715 4484717918039766421 www.hongten.com Shopping_Car
- 135.194.103.53 北京 2018-12-20 1545290594769 4833011508087432349 www.hongten.com Shopping_Car
- 180.21.100.66 贵州 2018-12-20 1545290594752 5270357330431599426 www.hongten.com Buy
- 167.71.65.70 山西 2018-12-20 1545290594790 275898530145861990 www.hongten.com Buy
- 125.51.21.199 宁夏 2018-12-20 1545290594814 3613499600574777198 www.hongten.com Buy
6.10.Storm再次消费Kafka数据处理后保存数据到Hbase
- Storm再次从Kafka消费数据
- Storm对数据进行统计(Buy-已经购买人数,Shopping_Car-潜在购买人数)
- Storm将数据写入到Hbase
- package com.b510.big.data.storm.process;
- import java.io.IOException;
- import java.text.SimpleDateFormat;
- import java.util.ArrayList;
- import java.util.Date;
- import java.util.List;
- import java.util.Map;
- import java.util.Properties;
- import org.apache.hadoop.conf.Configuration;
- import org.apache.hadoop.hbase.HColumnDescriptor;
- import org.apache.hadoop.hbase.HTableDescriptor;
- import org.apache.hadoop.hbase.TableName;
- import org.apache.hadoop.hbase.client.HBaseAdmin;
- import org.apache.hadoop.hbase.client.HConnection;
- import org.apache.hadoop.hbase.client.HConnectionManager;
- import org.apache.hadoop.hbase.client.HTableInterface;
- import org.apache.hadoop.hbase.client.Put;
- import storm.kafka.KafkaSpout;
- import storm.kafka.SpoutConfig;
- import storm.kafka.StringScheme;
- import storm.kafka.ZkHosts;
- import backtype.storm.Config;
- import backtype.storm.LocalCluster;
- import backtype.storm.StormSubmitter;
- import backtype.storm.generated.AlreadyAliveException;
- import backtype.storm.generated.InvalidTopologyException;
- import backtype.storm.spout.SchemeAsMultiScheme;
- import backtype.storm.task.TopologyContext;
- import backtype.storm.topology.BasicOutputCollector;
- import backtype.storm.topology.IBasicBolt;
- import backtype.storm.topology.OutputFieldsDeclarer;
- import backtype.storm.topology.TopologyBuilder;
- import backtype.storm.topology.base.BaseBasicBolt;
- import backtype.storm.tuple.Fields;
- import backtype.storm.tuple.Tuple;
- import backtype.storm.tuple.Values;
- public class LogProcessTopology {
- public static void main(String[] args) {
- ZkHosts zkHosts = new ZkHosts(Common.ZOOKEEPER_QUORUM);
- //Spout从'filtered_log' topic里面获取数据
- SpoutConfig spoutConfig = new SpoutConfig(zkHosts, Common.FILTERED_LOG_TOPIC, Common.ZOOKEEPER_ROOT, Common.ZOOKEEPER_ID);
- List<String> zkServers = new ArrayList<>();
- for (String host : zkHosts.brokerZkStr.split(",")) {
- zkServers.add(host.split(":")[0]);
- }
- spoutConfig.zkServers = zkServers;
- spoutConfig.zkPort = Common.ZOOKEEPER_PORT;
- spoutConfig.forceFromStart = true;
- spoutConfig.socketTimeoutMs = 60 * 60 * 1000;
- spoutConfig.scheme = new SchemeAsMultiScheme(new StringScheme());
- // 创建KafkaSpout
- KafkaSpout kafkaSpout = new KafkaSpout(spoutConfig);
- TopologyBuilder builder = new TopologyBuilder();
- // Storm再次从Kafka消费数据
- builder.setSpout(Common.KAFKA_SPOUT, kafkaSpout, 3);
- // Storm对数据进行统计(Buy-已经购买人数,Shopping_Car-潜在购买人数)
- builder.setBolt(Common.PROCESS_BOLT, new ProcessBolt(), 3).shuffleGrouping(Common.KAFKA_SPOUT);
- // Storm将数据写入到Hbase
- builder.setBolt(Common.HBASE_BOLT, new HbaseBolt(), 3).shuffleGrouping(Common.PROCESS_BOLT);
- Properties props = new Properties();
- props.put("metadata.broker.list", Common.STORM_METADATA_BROKER_LIST);
- props.put("request.required.acks", Common.STORM_REQUEST_REQUIRED_ACKS);
- props.put("serializer.class", Common.STORM_SERILIZER_CLASS);
- Config conf = new Config();
- conf.put("kafka.broker.properties", props);
- conf.put(Config.STORM_ZOOKEEPER_SERVERS, zkServers);
- if (args == null || args.length == 0) {
- // 本地方式运行
- LocalCluster localCluster = new LocalCluster();
- localCluster.submitTopology("storm-kafka-topology", conf, builder.createTopology());
- } else {
- // 集群方式运行
- conf.setNumWorkers(3);
- try {
- StormSubmitter.submitTopology(args[0], conf, builder.createTopology());
- } catch (AlreadyAliveException | InvalidTopologyException e) {
- System.out.println("error : " + e);
- }
- }
-
- }
- }
- class ProcessBolt extends BaseBasicBolt {
- private static final long serialVersionUID = 1L;
- @Override
- public void execute(Tuple input, BasicOutputCollector collector) {
- String logStr = input.getString(0);
- if (logStr != null) {
- String infos[] = logStr.split("\\t");
- //180.21.100.66 贵州 2018-12-20 1545290594752 5270357330431599426 www.hongten.com Buy
- collector.emit(new Values(infos[2], infos[6]));
- }
- }
- @Override
- public void declareOutputFields(OutputFieldsDeclarer declarer) {
- declarer.declare(new Fields("date", "user_action"));
- }
- }
- class HbaseBolt implements IBasicBolt {
- private static final long serialVersionUID = 1L;
- HBaseDAO hBaseDAO = null;
-
- SimpleDateFormat simpleDateFormat = null;
- SimpleDateFormat simpleDateFormatHHMMSS = null;
-
- int userBuyCount = 0;
- int userShoopingCarCount = 0;
-
- //这里要考虑避免频繁写入数据到hbase
- int writeToHbaseMaxNum = Common.WRITE_RECORD_TO_TABLE_PER_SECOND * 1000;
- long begin = System.currentTimeMillis();
- long end = 0;
-
- @SuppressWarnings("rawtypes")
- @Override
- public void prepare(Map map, TopologyContext context) {
- hBaseDAO = new HBaseDAOImpl();
- simpleDateFormat = new SimpleDateFormat(Common.DATE_FORMAT_YYYYDDMMHHMMSS);
- simpleDateFormatHHMMSS = new SimpleDateFormat(Common.DATE_FORMAT_HHMMSS);
- hBaseDAO.createTable(Common.TABLE_USER_ACTION, new String[]{Common.COLUMN_FAMILY}, Common.TABLE_MAX_VERSION);
- }
- @Override
- public void execute(Tuple input, BasicOutputCollector collector) {
- // 如果时间是第二天的凌晨1s
- // 需要对count做清零处理
- //不过这里的判断不是很准确,因为在此时,可能前一天的数据还没有处理完
- if (simpleDateFormatHHMMSS.format(new Date()).equals(Common.DATE_FORMAT_HHMMSS_DEFAULT_VALUE)) {
- userBuyCount = 0;
- userShoopingCarCount = 0;
- }
-
- if (input != null) {
- // base one ProcessBolt.declareOutputFields()
- String date = input.getString(0);
- String userAction = input.getString(1);
- if (userAction.equals(Common.KEY_WORD_BUY)) {
- //同一个user在一天之内可以重复'Buy'动作
- userBuyCount++;
- }
- if (userAction.equals(Common.KEY_WORD_SHOPPING_CAR)) {
- userShoopingCarCount++;
- }
- end = System.currentTimeMillis();
- if ((end - begin) > writeToHbaseMaxNum) {
- System.out.println("hbase_key: " + Common.KEY_WORD_BUY + "_" + date + " , userBuyCount: " + userBuyCount + ", userShoopingCarCount :" + userShoopingCarCount);
-
- //往hbase中写入数据
- String quailifer = simpleDateFormat.format(new Date());
- hBaseDAO.insert(Common.TABLE_USER_ACTION ,
- Common.KEY_WORD_BUY + "_" + date,
- Common.COLUMN_FAMILY,
- new String[] { quailifer },
- new String[] { "{user_buy_count:" + userBuyCount + "}" }
- );
- hBaseDAO.insert(Common.TABLE_USER_ACTION ,
- Common.KEY_WORD_SHOPPING_CAR + "_" + date,
- Common.COLUMN_FAMILY,
- new String[] { quailifer },
- new String[] { "{user_shopping_car_count:" + userShoopingCarCount + "}" }
- );
- begin = System.currentTimeMillis();
- }
- }
- }
- @Override
- public void declareOutputFields(OutputFieldsDeclarer declarer) {
- }
- @Override
- public Map<String, Object> getComponentConfiguration() {
- return null;
- }
- @Override
- public void cleanup() {
- }
- }
- interface HBaseDAO {
- public void createTable(String tableName, String[] columnFamilys, int maxVersion);
- public void insert(String tableName, String rowKey, String family, String quailifer[], String value[]);
- }
- class HBaseDAOImpl implements HBaseDAO {
- HConnection hConnection = null;
- static Configuration conf = null;
- public HBaseDAOImpl() {
- conf = new Configuration();
- conf.set("hbase.zookeeper.quorum", Common.HBASE_ZOOKEEPER_LIST);
- try {
- hConnection = HConnectionManager.createConnection(conf);
- } catch (IOException e) {
- e.printStackTrace();
- }
- }
-
- public void createTable(String tableName, String[] columnFamilys, int maxVersion) {
- try {
- HBaseAdmin admin = new HBaseAdmin(conf);
- if (admin.tableExists(tableName)) {
- System.err.println("table existing in hbase.");
- } else {
- HTableDescriptor tableDesc = new HTableDescriptor(TableName.valueOf(tableName));
- for (String columnFamily : columnFamilys) {
- HColumnDescriptor hColumnDescriptor = new HColumnDescriptor(columnFamily);
- hColumnDescriptor.setMaxVersions(maxVersion);
- tableDesc.addFamily(hColumnDescriptor);
- }
- admin.createTable(tableDesc);
- System.err.println("table is created.");
- }
- admin.close();
- } catch (Exception e) {
- e.printStackTrace();
- }
- }
-
- @Override
- public void insert(String tableName, String rowKey, String family, String quailifer[], String value[]) {
- HTableInterface table = null;
- try {
- table = hConnection.getTable(tableName);
- Put put = new Put(rowKey.getBytes());
- for (int i = 0; i < quailifer.length; i++) {
- String col = quailifer[i];
- String val = value[i];
- put.add(family.getBytes(), col.getBytes(), val.getBytes());
- }
- table.put(put);
- System.err.println("save record successfuly.");
- } catch (Exception e) {
- e.printStackTrace();
- } finally {
- try {
- table.close();
- } catch (IOException e) {
- e.printStackTrace();
- }
- }
- }
- }
Storm处理逻辑:
1.每秒向Hbase写入数据
2.明天凌晨会重置数据
如果,我们一直运行上面的程序,那么,系统就会一直往Hbase里面写入数据,那么这样,我们就可以采集到我们生成报表的数据了。
那么下面就是报表实现
6.11.读取Hbase数据通过POI生成Excel Report
- package com.b510.big.data.poi;
- import java.io.File;
- import java.io.FileInputStream;
- import java.io.FileOutputStream;
- import java.io.IOException;
- import java.io.InputStream;
- import java.util.ArrayList;
- import java.util.List;
- import org.apache.hadoop.conf.Configuration;
- import org.apache.hadoop.hbase.Cell;
- import org.apache.hadoop.hbase.CellUtil;
- import org.apache.hadoop.hbase.client.Get;
- import org.apache.hadoop.hbase.client.HConnection;
- import org.apache.hadoop.hbase.client.HConnectionManager;
- import org.apache.hadoop.hbase.client.HTableInterface;
- import org.apache.hadoop.hbase.client.Result;
- import org.apache.poi.xssf.usermodel.XSSFCell;
- import org.apache.poi.xssf.usermodel.XSSFSheet;
- import org.apache.poi.xssf.usermodel.XSSFWorkbook;
- public class ReportUtil {
- public static void main(String[] args) throws Exception {
- String year = "2018";
- String month = "12";
- String day = "21";
- String hour = "14";
- generateReport(year, month, day, hour);
- }
- private static void generateReport(String year, String month, String day, String hour) {
- HBaseDAO hBaseDAO = new HBaseDAOImpl();
- // format: yyyyMMddHH
- String begin = year + month + day + hour;
- String[] split = generateQuailifers(begin);
- List<Integer> userBuyCountList = getData(hBaseDAO, year, month, day, split, Common.KEY_WORD_BUY);
- List<Integer> userShoppingCarCountList = getData(hBaseDAO, year, month, day, split, Common.KEY_WORD_SHOPPING_CAR);
- //System.err.println(userBuyCountList.size());
- //System.err.println(userShoppingCarCountList.size());
- writeExcel(year, month, day, hour, userBuyCountList, userShoppingCarCountList);
- }
- private static void writeExcel(String year, String month, String day, String hour, List<Integer> userBuyCountList, List<Integer> userShoppingCarCountList) {
- try {
- File file = new File(Common.REPORT_TEMPLATE);
- InputStream in = new FileInputStream(file);
- XSSFWorkbook wb = new XSSFWorkbook(in);
- XSSFSheet sheet = wb.getSheetAt(0);
- if (sheet != null) {
- XSSFCell cell = null;
- cell = sheet.getRow(0).getCell(0);
- cell.setCellValue("One Hour Report-" + year + "-" + month + "-" + day + " From " + hour + ":00 To " + hour + ":59");
- putData(userBuyCountList, sheet, 3);
- putData(userShoppingCarCountList, sheet, 7);
- FileOutputStream out = new FileOutputStream(Common.REPORT_ONE_HOUR);
- wb.write(out);
- out.close();
- System.err.println("done.");
- }
- } catch (Exception e) {
- System.err.println("Exception" + e);
- }
- }
- private static void putData(List<Integer> userBuyCountList, XSSFSheet sheet, int rowNum) {
- XSSFCell cell;
- if (userBuyCountList != null && userBuyCountList.size() > 0) {
- for (int i = 0; i < userBuyCountList.size(); i++) {
- cell = sheet.getRow(rowNum).getCell(i + 1);
- cell.setCellValue(userBuyCountList.get(i));
- }
- }
- }
- private static List<Integer> getData(HBaseDAO hBaseDAO, String year, String month, String day, String[] split, String preKey) {
- List<Integer> list = new ArrayList<Integer>();
- Result rs = hBaseDAO.getOneRowAndMultiColumn(Common.TABLE_USER_ACTION, preKey + "_" + year + "-" + month + "-" + day, split);
- for (Cell cell : rs.rawCells()) {
- String value = new String(CellUtil.cloneValue(cell)).split(":")[1].trim();
- value = value.substring(0, value.length() - 1);
- list.add(Integer.valueOf(value));
- }
- return list;
- }
- private static String[] generateQuailifers(String begin) {
- StringBuilder sb = new StringBuilder();
- for (int i = 0; i < 60;) {
- if (i == 0 || i == 5) {
- sb.append(begin).append("0").append(i).append("00").append(",");
- } else {
- sb.append(begin).append(i).append("00").append(",");
- }
- i = i + 5;
- }
- sb.append(begin).append("5959");
- String sbStr = sb.toString();
- String[] split = sbStr.split(",");
- return split;
- }
- }
- interface HBaseDAO {
- Result getOneRowAndMultiColumn(String tableName, String rowKey, String[] cols);
- }
- class HBaseDAOImpl implements HBaseDAO {
- HConnection hConnection = null;
- static Configuration conf = null;
- public HBaseDAOImpl() {
- conf = new Configuration();
- conf.set("hbase.zookeeper.quorum", Common.HBASE_ZOOKEEPER_LIST);
- try {
- hConnection = HConnectionManager.createConnection(conf);
- } catch (IOException e) {
- e.printStackTrace();
- }
- }
- @Override
- public Result getOneRowAndMultiColumn(String tableName, String rowKey, String[] cols) {
- HTableInterface table = null;
- Result rsResult = null;
- try {
- table = hConnection.getTable(tableName);
- Get get = new Get(rowKey.getBytes());
- for (int i = 0; i < cols.length; i++) {
- get.addColumn(Common.COLUMN_FAMILY.getBytes(), cols[i].getBytes());
- }
- rsResult = table.get(get);
- } catch (Exception e) {
- e.printStackTrace();
- } finally {
- try {
- table.close();
- } catch (IOException e) {
- e.printStackTrace();
- }
- }
- return rsResult;
- }
- }
- class Common {
- // report
- public static final String REPORT_TEMPLATE = "./resources/report.xlsx";
- public static final String REPORT_ONE_HOUR = "./resources/one_report.xlsx";
- public static final String DATE_FORMAT_YYYYDDMMHHMMSS = "yyyyMMddHHmmss";
- public static final String HBASE_ZOOKEEPER_LIST = "node1:2888,node2:2888,node3:2888";
- // key word
- public static final String KEY_WORD_BUY = "Buy";
- public static final String KEY_WORD_SHOPPING_CAR = "Shopping_Car";
- // hbase
- public static final String TABLE_USER_ACTION = "t_user_actions";
- public static final String COLUMN_FAMILY = "cf";
- }
7.源码下载
Source Code:Flume_Kafka_Storm_Hbase_Hdfs_Poi_src.zip
相应的Jar文件,由于so big,自己根据import *信息加入。
8.总结
学习Big Data一段时间了,通过自己的学习和摸索,实现自己想要的应用,还是很有成就感的哈....当然,踩地雷也是一种不错的体验...:)
========================================================
More reading,and english is important.
I'm Hongten
- 大哥哥大姐姐,觉得有用打赏点哦!你的支持是我最大的动力。谢谢。
Hongten博客排名在100名以内。粉丝过千。
Hongten出品,必是精品。
E | hongtenzone@foxmail.com B | http://www.cnblogs.com/hongten
========================================================