- 1 package big.data.analyse.ml.randomforest
- 2
- 3 import org.apache.spark.ml.Pipeline
- 4 import org.apache.spark.ml.classification.{RandomForestClassificationModel, RandomForestClassifier}
- 5 import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
- 6 import org.apache.spark.ml.feature.{IndexToString, VectorIndexer, StringIndexer}
- 7 import org.apache.spark.sql.SparkSession
- 8
- 9 /**
- 10 * 随机森林
- 11 * Created by zhen on 2018/9/20.
- 12 */
- 13 object RandomForest {
- 14 def main(args: Array[String]) {
- 15 //创建spark对象
- 16 val spark = SparkSession.builder()
- 17 .appName("RandomForest")
- 18 .master("local[2]")
- 19 .getOrCreate()
- 20 //获取数据
- 21 val data = spark.read.format("libsvm")
- 22 .load("src/big/data/analyse/ml/randomforest/randomforest.txt")
- 23 //标识整个数据集的标识列和索引列
- 24 val labelIndexer = new StringIndexer()
- 25 .setInputCol("label")
- 26 .setOutputCol("indexedLabel")
- 27 .fit(data)
- 28 //设置树的最大层次
- 29 val featureIndexer = new VectorIndexer()
- 30 .setInputCol("features")
- 31 .setOutputCol("indexedFeatures")
- 32 .setMaxCategories(4)
- 33 .fit(data)
- 34 //拆分数据为训练集和测试集(7:3)
- 35 val Array(trainingData, testData) = data.randomSplit(Array(0.7, 0.3))
- 36 testData.show(5)
- 37 //创建模型
- 38 val randomForest = new RandomForestClassifier()
- 39 .setLabelCol("indexedLabel")
- 40 .setFeaturesCol("indexedFeatures")
- 41 .setNumTrees(10)
- 42 //转化初始数据
- 43 val labelConverter = new IndexToString()
- 44 .setInputCol("prediction")
- 45 .setOutputCol("predictedLabel")
- 46 .setLabels(labelIndexer.labels)
- 47 //使用管道运行转换器和随机森林算法
- 48 val pipeline = new Pipeline()
- 49 .setStages(Array(labelIndexer, featureIndexer, randomForest, labelConverter))
- 50 //训练模型
- 51 val model = pipeline.fit(trainingData)
- 52 //预测
- 53 val predictions = model.transform(testData)
- 54 //输出预测结果
- 55 predictions.select("predictedLabel", "label", "features").show(5)
- 56 //创建评估函数,计算错误率
- 57 val evaluator = new MulticlassClassificationEvaluator()
- 58 .setLabelCol("indexedLabel")
- 59 .setPredictionCol("prediction")
- 60 .setMetricName("accuracy")
- 61
- 62 val accuracy = evaluator.evaluate(predictions)
- 63 println("test error = " + (1.0 - accuracy))
- 64
- 65 val rfModel = model.stages(2).asInstanceOf[RandomForestClassificationModel]
- 66 println("learned classification forest model:\n" + rfModel.toDebugString)
- 67
- 68 spark.stop()
- 69 }
- 70 }
使用数据:
- 0 128:51 129:159 130:253 131:159 132:50 155:48 156:238 157:252 158:252
- 1 159:124 160:253 161:255 162:63 186:96 187:244 188:251 189:253 190:62
- 1 125:145 126:255 127:211 128:31 152:32 153:237 154:253 155:252 156:71
- 1 153:5 154:63 155:197 181:20 182:254 183:230 184:24 209:20 210:254
- 1 152:1 153:168 154:242 155:28 180:10 181:228 182:254 183:100 209:190
- 0 130:64 131:253 132:255 133:63 157:96 158:205 159:251 160:253 161:205
- 1 159:121 160:254 161:136 186:13 187:230 188:253 189:248 190:99 213:4
- 1 100:166 101:222 102:55 128:197 129:254 130:218 131:5 155:29 156:249
- 0 155:53 156:255 157:253 158:253 159:253 160:124 183:180 184:253 185:25
- 0 128:73 129:253 130:227 131:73 132:21 156:73 157:251 158:251 159:251
- 1 155:178 156:255 157:105 182:6 183:188 184:253 185:216 186:14 210:14
- 0 154:46 155:105 156:254 157:254 158:254 159:254 160:255 161:239 162:41
- 0 152:56 153:105 154:220 155:254 156:63 178:18 179:166 180:233 181:253
- 1 130:7 131:176 132:254 133:224 158:51 159:253 160:253 161:223 185:4
- 0 155:21 156:176 157:253 158:253 159:124 182:105 183:176 184:251 185:25
- 1 151:68 152:45 153:131 154:131 155:131 156:101 157:68 158:92 159:44
- 0 125:29 126:170 127:255 128:255 129:141 151:29 152:198 153:255 154:255
- 0 153:203 154:254 155:252 156:252 157:252 158:214 159:51 160:20 180:62
- 1 98:64 99:191 100:70 125:68 126:243 127:253 128:249 129:63 152:30
- 1 125:26 126:240 127:72 153:25 154:238 155:208 182:209 183:226 184:14
- 0 155:62 156:91 157:213 158:255 159:228 160:91 161:12 182:70 183:230
- 1 157:42 158:228 159:253 160:253 185:144 186:251 187:251 188:251 212:89
- 1 128:62 129:254 130:213 156:102 157:253 158:252 159:102 160:20 184:102
- 0 154:28 155:195 156:254 157:254 158:254 159:254 160:254 161:255 162:61
- 0 123:8 124:76 125:202 126:254 127:255 128:163 129:37 130:2 150:13
- 0 127:68 128:254 129:255 130:254 131:107 153:11 154:176 155:230 156:253
- 1 157:85 158:255 159:103 160:1 185:205 186:253 187:253 188:30 213:205
- 1 126:94 127:132 154:250 155:250 156:4 182:250 183:254 184:95 210:250
- 1 124:32 125:253 126:31 152:32 153:251 154:149 180:32 181:251 182:188
- 1 129:39 130:254 131:255 132:254 133:140 157:136 158:253 159:253 160:22
- 0 123:59 124:55 149:71 150:192 151:254 152:250 153:147 154:17 176:123
- 1 128:58 129:139 156:247 157:247 158:25 183:121 184:253 185:156 186:3
- 1 129:28 130:247 131:255 132:165 156:47 157:221 158:252 159:252 160:164
- 0 156:13 157:6 181:10 182:77 183:145 184:253 185:190 186:67 207:11
- 0 127:28 128:164 129:254 130:233 131:148 132:11 154:3 155:164 156:254
- 0 129:105 130:255 131:219 132:67 133:67 134:52 156:20 157:181 158:253
- 0 125:22 126:183 127:252 128:254 129:252 130:252 131:252 132:76 151:85
- 1 155:114 156:206 157:25 183:238 184:252 185:55 211:222 212:252 213:55
- 1 127:73 128:253 129:253 130:63 155:115 156:252 157:252 158:144 183:217
- 1 120:85 121:253 122:132 123:9 147:82 148:241 149:251 150:251 151:128
- 1 126:15 127:200 128:255 129:90 154:42 155:254 156:254 157:173 182:42
- 0 182:32 183:57 184:57 185:57 186:57 187:57 188:57 189:57 208:67 209:18
- 0 127:42 128:235 129:255 130:84 153:15 154:132 155:208 156:253 157:253
- 1 156:202 157:253 158:69 184:253 185:252 186:121 212:253 213:252 214:69
- 1 156:73 157:253 158:253 159:253 160:124 184:73 185:251 186:251 187:251
- 1 124:111 125:255 126:48 152:162 153:253 154:237 155:63 180:206 181:253
- 0 99:70 100:255 101:165 102:114 127:122 128:253 129:253 130:253 131:120
- 1 124:29 125:197 126:255 127:84 152:85 153:251 154:253 155:83 180:86
- 1 159:31 160:210 161:253 162:163 187:198 188:252 189:252 190:162 213:10
- 1 131:159 132:255 133:122 158:167 159:228 160:253 161:121 185:64 186:23
- 0 153:92 154:191 155:178 156:253 157:242 158:141 159:104 160:29 180:26
- 1 128:53 129:250 130:255 131:25 156:167 157:253 158:253 159:25 182:3
- 0 122:63 123:176 124:253 125:253 126:159 127:113 128:63 150:140 151:253
- 0 153:12 154:136 155:254 156:255 157:195 158:115 159:3 180:6 181:175
- 1 128:255 129:253 130:57 156:253 157:251 158:225 159:56 183:169 184:254
- 0 151:23 152:167 153:208 154:254 155:255 156:129 157:19 179:151 180:253
- 1 130:24 131:150 132:233 133:38 156:14 157:89 158:253 159:254 160:254
- 0 125:120 126:253 127:253 128:63 151:38 152:131 153:246 154:252 155:252
- 1 127:155 128:253 129:126 155:253 156:251 157:141 158:4 183:253 184:251
- 0 101:88 102:127 103:5 126:19 127:58 128:20 129:14 130:217 131:19 152:7
- 0 127:37 128:141 129:156 130:156 131:194 132:194 133:47 153:11 154:132
- 0 154:32 155:134 156:218 157:254 158:254 159:254 160:217 161:84 176:44
- 1 124:102 125:252 126:252 127:41 152:102 153:250 154:250 155:202 180:10
- 0 124:20 125:121 126:197 127:253 128:64 151:23 152:200 153:252 154:252
- 1 127:20 128:254 129:255 130:37 155:19 156:253 157:253 158:134 183:19
- 0 235:40 236:37 238:7 239:77 240:137 241:136 242:136 243:136 244:136
- 1 128:166 129:255 130:187 131:6 156:165 157:253 158:253 159:13 183:15
- 1 128:117 129:128 155:2 156:199 157:127 183:81 184:254 185:87 211:116
- 1 129:159 130:142 156:11 157:220 158:141 184:78 185:254 186:141 212:111
- 0 124:66 125:254 126:254 127:58 128:60 129:59 130:59 131:50 151:73
- 1 129:101 130:222 131:84 157:225 158:252 159:84 184:89 185:246 186:208
- 0 124:41 125:254 126:254 127:157 128:34 129:34 130:218 131:255 132:206
- 0 96:56 97:247 98:121 124:24 125:242 126:245 127:122 153:231 154:253
- 0 125:19 126:164 127:253 128:255 129:253 130:118 131:59 132:36 153:78
- 1 129:232 130:255 131:107 156:58 157:244 158:253 159:106 184:95 185:253
- 1 127:63 128:128 129:2 155:63 156:254 157:123 183:63 184:254 185:179
- 1 130:131 131:255 132:184 133:15 157:99 158:247 159:253 160:182 161:15
- 0 125:57 126:255 127:253 128:198 129:85 153:168 154:253 155:251 156:253
- 0 127:12 128:105 129:224 130:255 131:247 132:22 155:131 156:254 157:254
- 1 130:226 131:247 132:55 157:99 158:248 159:254 160:230 161:30 185:125
- 1 130:166 131:253 132:124 133:53 158:140 159:251 160:251 161:180 185:12
- 1 129:17 130:206 131:229 132:44 157:2 158:125 159:254 160:123 185:95
- 1 130:218 131:253 132:124 157:84 158:236 159:251 160:251 184:63 185:236
- 1 124:102 125:180 126:1 152:140 153:254 154:130 180:140 181:254 182:204
- 0 128:87 129:208 130:249 155:27 156:212 157:254 158:195 182:118 183:225
- 1 126:134 127:230 154:133 155:231 156:10 182:133 183:253 184:96 210:133
- 1 125:29 126:85 127:255 128:139 153:197 154:251 155:253 156:251 181:254
- 1 125:149 126:255 127:254 128:58 153:215 154:253 155:183 156:2 180:41
- 1 130:79 131:203 132:141 157:51 158:240 159:240 160:140 185:88 186:252
- 1 126:94 127:254 128:75 154:166 155:253 156:231 182:208 183:253 184:147
- 0 127:46 128:105 129:254 130:254 131:224 132:59 133:59 134:9 155:196
- 1 125:42 126:232 127:254 128:58 153:86 154:253 155:253 156:58 181:86
- 1 156:60 157:229 158:38 184:187 185:254 186:78 211:121 212:252 213:254
- 1 101:11 102:150 103:72 129:37 130:251 131:71 157:63 158:251 159:71
- 0 127:45 128:254 129:254 130:254 131:148 132:24 133:9 154:43 155:254
- 0 125:218 126:253 127:253 128:255 129:149 130:62 151:42 152:144 153:236
- 0 127:60 128:96 129:96 130:48 153:16 154:171 155:228 156:253 157:251
- 0 126:32 127:202 128:255 129:253 130:253 131:175 132:21 152:84 153:144
- 1 130:218 131:170 132:108 157:32 158:227 159:252 160:232 185:129 186:25
- 1 130:116 131:255 132:123 157:29 158:213 159:253 160:122 185:189 186:25
结果(测试集&预测集):

内部决策树结构:
总结:可知该随机森林共有10棵树组成,预测结果为10棵树的投票为准。每棵树的最大层次为4,这是为了避免层次过高带来的计算压力和过拟合!