前提已经安装好hadoop的hdfs集群,可以查看
**https://www.cnblogs.com/tree1123/p/10683570.html
Mapreduce是hadoop的运算框架,可以对hdfs中的数据分开进行计算,先执行很多maptask,在执行reducetask,这个过程中任务的执行需要一个任务调度的平台,就是yarn。
一、安装YARN集群
yarn集群中有两个角色:
主节点:Resource Manager ?1台
从节点:Node Manager ??N台
?
Resource Manager一般安装在一台专门的机器上
Node Manager应该与HDFS中的data node重叠在一起
修改配置文件:yarn-site.xml
<property><name>yarn.resourcemanager.hostname</name><value>主机名</value></property><property><name>yarn.nodemanager.aux-services</name><value>mapreduce_shuffle</value></property><property><name>yarn.nodemanager.resource.memory-mb</name><value>2048</value></property><property><name>yarn.nodemanager.resource.cpu-vcores</name><value>2</value></property>
然后scp到所有机器,修改主节点hadoop的slaves文件,列入要启动nodemanager的机器,配好免密
然后,就可以用脚本启动yarn集群:
sbin/start-yarn.sh
停止:
sbin/stop-yarn.sh
页面:http://主节点:8088 看看node manager节点是否识别
开发一个提交job到yarn的客户端类,mapreduce所有jar和自定义类,打成jar包上传到hadoop集群中的任意一台机器上,运行jar包中的(YARN客户端类
hadoop jar ......JobSubmitter
二、开发mapreduce程序
主要需要开发:
map阶段的进、出数据,
reduce阶段的进、出数据,
类型都应该是实现了HADOOP序列化框架的类型,如:
String对应Text
Integer对应IntWritable
Long对应LongWritable
例子wordcount代码:
WordcountMapper
public class WordcountMapper extends Mapper<LongWritable, Text, Text, IntWritable>{ @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // 切单词 String line = value.toString(); String[] words = line.split(" "); for(String word:words){ context.write(new Text(word), new IntWritable(1)); } }}
WordcountReducer
public class WordcountReducer extends Reducer<Text, IntWritable, Text, IntWritable>{ @Override protected void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException { int count = 0; Iterator<IntWritable> iterator = values.iterator(); while(iterator.hasNext()){ IntWritable value = iterator.next(); count += value.get(); } context.write(key, new IntWritable(count)); }}public class JobSubmitter { public static void main(String[] args) throws Exception { // 在代码中设置JVM系统参数,用于给job对象来获取访问HDFS的用户身份 System.setProperty("HADOOP_USER_NAME", "root"); Configuration conf = new Configuration(); // 1、设置job运行时要访问的默认文件系统 conf.set("fs.defaultFS", "hdfs://hdp-01:9000"); // 2、设置job提交到哪去运行 conf.set("mapreduce.framework.name", "yarn"); conf.set("yarn.resourcemanager.hostname", "hdp-01"); // 3、如果要从windows系统上运行这个job提交客户端程序,则需要加这个跨平台提交的参数 conf.set("mapreduce.app-submission.cross-platform","true"); Job job = Job.getInstance(conf); // 1、封装参数:jar包所在的位置 job.setJar("d:/wc.jar"); //job.setJarByClass(JobSubmitter.class); // 2、封装参数: 本次job所要调用的Mapper实现类、Reducer实现类 job.setMapperClass(WordcountMapper.class); job.setReducerClass(WordcountReducer.class); // 3、封装参数:本次job的Mapper实现类、Reducer实现类产生的结果数据的key、value类型 job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(IntWritable.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); Path output = new Path("/wordcount/output"); FileSystem fs = FileSystem.get(new URI("hdfs://hdp-01:9000"),conf,"root"); if(fs.exists(output)){ fs.delete(output, true); } // 4、封装参数:本次job要处理的输入数据集所在路径、最终结果的输出路径 FileInputFormat.setInputPaths(job, new Path("/wordcount/input")); FileOutputFormat.setOutputPath(job, output); // 注意:输出路径必须不存在 // 5、封装参数:想要启动的reduce task的数量 job.setNumReduceTasks(2); // 6、提交job给yarn boolean res = job.waitForCompletion(true); System.exit(res?0:-1); } }
MR还有一些高级的用法:自定义类型,自定义Partitioner,Combiner,排序,倒排索引,自定义GroupingComparator
三、mapreduce与yarn的核心机制
yarn是一个分布式程序的运行调度平台
yarn中有两大核心角色:
1、Resource Manager
接受用户提交的分布式计算程序,并为其划分资源
管理、监控各个Node Manager上的资源情况,以便于均衡负载
?
2、Node Manager
管理它所在机器的运算资源(cpu + 内存)
负责接受Resource Manager分配的任务,创建容器、回收资源
Mapreduce工作机制:
划分输入切片——》 环形缓冲区 ——》 分区排序 ——》Combiner 局部聚合——》shuffle ——》GroupingComparator——》输出