经验首页 前端设计 程序设计 Java相关 移动开发 数据库/运维 软件/图像 大数据/云计算 其他经验
当前位置:技术经验 » 程序设计 » NumPy » 查看文章
numpy中的ndarray方法和属性详解
来源:jb51  时间:2019/5/28 8:54:52  对本文有异议

NumPy数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推。在NumPy中,每一个线性的数组称为是一个轴(axes),秩其实是描述轴的数量。比如说,二维数组相当于是一个一维数组,而这个一维数组中每个元素又是一个一维数组。所以这个一维数组就是NumPy中的轴(axes),而轴的数量——秩,就是数组的维数。

Numpy库中的矩阵模块为ndarray对象,有很多属性:T,data, dtype,flags,flat,imag,real,size,

itemsize,nbytes,ndim,shape,strides,ctypes,base等等。

  1. >>> import numpy as np
  2. >>> x=np.array([[1,2,3],[9,8,7],[6,5,4]])
  3. >>> x.T #获得x的转置矩阵
  4. array([[1, 9, 6],
  5. [2, 8, 5],
  6. [3, 7, 4]])
  7. >>> print x.flags #返回数组内部的信息
  8. C_CONTIGUOUS : True
  9. F_CONTIGUOUS : False
  10. OWNDATA : True
  11. WRITEABLE : True
  12. ALIGNED : True
  13. UPDATEIFCOPY : False
  14. >>> x.flat[2:6] #将数组变为1维数组,并获取其中的一部分数据
  15. array([3, 9, 8, 7])
  16. >>> x.flat = 4; x #将值赋给1维数组,再转化成有原有数组的大小形式
  17. array([[4, 4, 4],
  18. [4, 4, 4],
  19. [4, 4, 4]])
  20. >>> x
  21. array([[4, 4, 4],
  22. [4, 4, 4],
  23. [4, 4, 4]])

ndarray.imag # 为复变函数中含有虚部的数组,如下:

  1. >>> x = np.sqrt([2+3j, 5+0j]) # 创建一个复数
  2. >>> x
  3. array([ 1.67414923+0.89597748j, 2.23606798+0.j ])
  4. >>> x.imag #获得复数的虚部
  5. array([ 0.89597748, 0. ])
  6. >>> x.real #获得复数的实部
  7. array([ 1.67414923, 2.23606798])
  8. >>> x=np.arange(10) #随机生成一个数组,并重新命名一个空间的数组
  9. >>> x.reshape(2,5)
  10. array([[0, 1, 2, 3, 4],
  11. [5, 6, 7, 8, 9]])
  12. >>> x.size #获得数组中元素的个数
  13. 10
  14. >>> x.ndim #获得数组的维数
  15. >>> x.shape #获得数组的(行数,列数)
  16. (10,)
  17. >>> y=x.reshape(5,2)
  18. >>> y
  19. array([[0, 1],
  20. [2, 3],
  21. [4, 5],
  22. [6, 7],
  23. [8, 9]])
  24. >>> y.base #获得该数组基于另外一个对象数组而来,如下,y是根据x而来
  25. array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Ndarray对象的方法

ndarray.ptp(axis=None, out=None) : 返回数组的最大值—最小值或者某轴的最大值—最小值

ndarray.clip(a_min, a_max, out=None) : 小于最小值的元素赋值为最小值,大于最大值的元素变为最大值。

ndarray.all():如果所有元素都为真,那么返回真;否则返回假

ndarray.any():只要有一个元素为真则返回真

ndarray.swapaxes(axis1, axis2) : 交换两个轴的元素,如下

  1. >>> z.swapaxes(0,1)
  2. array([[2, 4, 6, 8],
  3. [3, 5, 7, 9]])

下面为改变数组维度和大小的方法:

ndarray.reshape(shape[, order]) :返回重命名数组大小后的数组,不改变元素个数.

ndarray.resize(new_shape[, refcheck]) :改变数组的大小(可以改变数组中元素个数).

ndarray.transpose(*axes) :返回矩阵的转置矩阵

ndarray.swapaxes(axis1, axis2) : 交换两个轴的元素后的矩阵.

ndarray.flatten([order]) : 复制一个一维的array出来.

ndarray.ravel([order]) :返回为展平后的一维数组.

ndarray.squeeze([axis]) :移除长度为1的轴。

ndarray.tolist():将数组转化为列表

ndarray.take(indices, axis=None, out=None, mode='raise'):获得数组的指定索引的数据,如:

  1. >>> a=np.arange(12).reshape(3,4)
  2. >>> a
  3. array([[ 0, 1, 2, 3],
  4. [ 4, 5, 6, 7],
  5. [ 8, 9, 10, 11]])
  6. >>> a.take([1,3],axis=1) #提取1,3列的数据
  7. array([[ 1, 3],
  8. [ 5, 7],
  9. [ 9, 11]])

numpy.put(a, ind, v, mode='raise'):用v的值替换数组a中的ind(索引)的值。Mode可以为raise/wrap/clip。Clip:如果给定的ind超过了数组的大小,那么替换最后一个元素。

  1. numpy.repeat(a, repeats, axis=None):重复数组的元素,如:
  2. >>> x = np.array([[1,2],[3,4]])
  3. >>> np.repeat(x, 2)
  4. array([1, 1, 2, 2, 3, 3, 4, 4])
  5. >>> np.repeat(x, 3, axis=1)
  6. array([[1, 1, 1, 2, 2, 2],
  7. [3, 3, 3, 4, 4, 4]])
  8. >>> np.repeat(x, [1, 2], axis=0)
  9. array([[1, 2],
  10. [3, 4],
  11. [3, 4]])
  12.  

numpy.tile(A, reps):根据给定的reps重复数组A,和repeat不同,repeat是重复元素,该方法是重复数组。

ndarray.var(axis=None, dtype=None, out=None, ddof=0):返回数组的方差,沿指定的轴。

ndarray.std(axis=None, dtype=None, out=None, ddof=0):沿给定的轴返回数则的标准差

ndarray.prod(axis=None, dtype=None, out=None):返回指定轴的所有元素乘机

ndarray.cumprod(axis=None, dtype=None, out=None):返回指定轴的累积,如下:

  1. >>> a
  2. array([[ 0, 1, 2, 3],
  3. [ 4, 5, 6, 7],
  4. [ 8, 9, 10, 11]])
  5. >>> a.cumprod(axis=1) #得到竖轴的累积
  6. array([[ 0, 0, 0, 0],
  7. [ 4, 20, 120, 840],
  8. [ 8, 72, 720, 7920]])

ndarray.mean(axis=None, dtype=None, out=None):返回指定轴的数组元素均值

ndarray.cumsum(axis=None, dtype=None, out=None):返回指定轴的元素累计和。如:

  1. >>> a
  2. array([[ 0, 1, 2, 3],
  3. [ 4, 5, 6, 7],
  4. [ 8, 9, 10, 11]])
  5. >>> a.cumsum(axis=1)
  6. array([[ 0, 1, 3, 6],
  7. [ 4, 9, 15, 22],
  8. [ 8, 17, 27, 38]])

ndarray.sum(axis=None, dtype=None, out=None):返回指定轴所有元素的和

ndarray.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None):返回沿对角线的数组元素之和

ndarray.round(decimals=0, out=None):将数组中的元素按指定的精度进行四舍五入,如下:

  1. >>> np.around([0.37, 1.64])
  2. array([ 0., 2.])
  3. >>> np.around([0.37, 1.64], decimals=1)
  4. array([ 0.4, 1.6])
  5. >>> np.around([.5, 1.5, 2.5, 3.5, 4.5]) # rounds to nearest even value
  6. array([ 0., 2., 2., 4., 4.])
  7. >>> np.around([1,2,3,11], decimals=1) # ndarray of ints is returned
  8. array([ 1, 2, 3, 11])
  9. >>> np.around([1,2,3,11], decimals=-1)
  10. array([ 0, 0, 0, 10])

ndarray.conj():返回所有复数元素的共轭复数,如:

  1. >>> b=np.array([[1+2j,3+0j],[3+4j,7+5j]])
  2. >>> b
  3. array([[ 1.+2.j, 3.+0.j],
  4. [ 3.+4.j, 7.+5.j]])
  5. >>> b.conj()
  6. array([[ 1.-2.j, 3.-0.j],
  7. [ 3.-4.j, 7.-5.j]])

ndarray.argmin(axis=None, out=None):返回指定轴最小元素的索引。

ndarray.min(axis=None, out=None):返回指定轴的最小值

ndarray.argmax(axis=None, out=None):返回指定轴的最大元素索引值

ndarray.diagonal(offset=0, axis1=0, axis2=1):返回对角线的所有元素。

ndarray.compress(condition, axis=None, out=None):返回指定轴上条件下的切片。

ndarray.nonzero():返回非零元素的索引

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持w3xue。

 友情链接:直通硅谷  点职佳  北美留学生论坛

本站QQ群:前端 618073944 | Java 606181507 | Python 626812652 | C/C++ 612253063 | 微信 634508462 | 苹果 692586424 | C#/.net 182808419 | PHP 305140648 | 运维 608723728

W3xue 的所有内容仅供测试,对任何法律问题及风险不承担任何责任。通过使用本站内容随之而来的风险与本站无关。
关于我们  |  意见建议  |  捐助我们  |  报错有奖  |  广告合作、友情链接(目前9元/月)请联系QQ:27243702 沸活量
皖ICP备17017327号-2 皖公网安备34020702000426号