经验首页 前端设计 程序设计 Java相关 移动开发 数据库/运维 软件/图像 大数据/云计算 其他经验
当前位置:技术经验 » 数据库/运维 » Redis » 查看文章
基于Redis扩展模块的布隆过滤器使用
来源:cnblogs  作者:MSSQL123  时间:2019/9/24 8:45:08  对本文有异议

什么是布隆过滤器?
它实际上是一个很长的二进制向量和一系列随机映射函数。把一个目标元素通过多个hash函数的计算,将多个随机计算出的结果映射到二进制向量的位中,依次来间接标记一个元素是否存在于一个集合中。
布隆过滤器可以做什么?
布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难。
布隆过滤器特点
如果布隆过滤器显示一个元素不存在于集合中,那么这个元素100%不存在与集合当中
如果布隆过滤器显示一个元素存在于集合中,那么很有可能存在,可能性取决于对布隆过滤器的定义(BF.RESERVE {key} {error_rate} {capacity})

布隆过滤器的原理图,这个就很容易理解了。

Redis中的布隆过滤器实现(rebloom模块扩展)

下载并编译
git clone git://github.com/RedisLabsModules/rebloom
cd rebloom
make
配置文件中加载rebloom
loadmodule /your_path/rebloom.so
重启Redis服务器即可
./bin/redis-cli -h 127.0.0.1 -p 6379 -a ****** shutdown
./bin/redis-server redis.conf

rebloom在Redis中的使用

bloom filter定义

BF.RESERVE {key} {error_rate} {capacity}
使用给定的期望错误率和初始容量创建空的Bloom过滤器(如果不存在的话)。如果打算向Bloom过滤器中添加许多项,则此命令非常有用,否则只能使用BF.ADD 添加项。
初始容量和错误率将决定过滤器的性能和内存使用情况。一般来说,错误率越小(即对误差的容忍度越低),每个过滤器条目的空间消耗就越大。

bloom filter基本操作

1,BF.ADD {key} {item}
单条添加元素
向Bloom filter添加一个元素,如果该key不存在,则创建该key(过滤器)。
如果项是新插入的,则为“1”;如果项以前可能存在,则为“0”。

2,BF.MADD {key} {item} [item...]
批量添加元素
布尔数(整数)的数组。返回值为0或1的范围的数据,这取决于是否将相应的输入元素新添加到过滤器中,或者是否已经存在。

3,BF.EXISTS {key} {item}
判断单个元素是否存在
如果存在,返回1,否则返回0

4,BF.MEXISTS {key} {item} [item...]
判断多个元素是否存在
布尔数(整数)的数组。返回值为0或1的范围的数据,这取决于是否将相应的元是否已经存在于key中。

  1. 127.0.0.1:8001> bf.reserve bloom_filter_test 0.0000001 1000000
  2. OK
  3. 127.0.0.1:8001> bf.reserve bloom_filter_test 0.0000001 1000000
  4. (error) ERR item exists
  5. 127.0.0.1:8001>
  6. 127.0.0.1:8001>
  7. 127.0.0.1:8001> bf.add bloom_filter_test key1
  8. (integer) 1
  9. 127.0.0.1:8001> bf.add bloom_filter_test key2
  10. (integer) 1
  11. 127.0.0.1:8001>
  12. 127.0.0.1:8001> bf.madd bloom_filter_test key2 key3 key4 key5
  13. 1) (integer) 0
  14. 2) (integer) 1
  15. 3) (integer) 1
  16. 4) (integer) 1
  17. 127.0.0.1:8001> bf.exists bloom_filter_test key2
  18. (integer) 1
  19. 127.0.0.1:8001> bf.exists bloom_filter_test key3
  20. (integer) 1
  21. 127.0.0.1:8001> bf.mexists bloom_filter_test key3 key4 key5
  22. 1) (integer) 1
  23. 2) (integer) 1
  24. 3) (integer) 1
  25. 127.0.0.1:8001>

5,bf.insert

bf.insert{key} [CAPACITY {cap}] [ERROR {ERROR}] [NOCREATE] ITEMS {item…}
该命令将向bloom过滤器添加一个或多个项,如果它还不存在,则默认情况下创建它。有几个参数可用于修改此行为。
key:过滤器的名称
capacity:如果指定了,应该在后面加上要创建的过滤器的所需容量。如果过滤器已经存在,则忽略此参数。如果自动创建了过滤器,并且没有此参数,则使用默认容量(在模块级指定)。见bf.reserve。
error:如果指定了,后面应该跟随着新创建的过滤器的错误率(如果它还不存在)。如果自动创建过滤器而没有指定错误,则使用默认的模块级错误率。见bf.reserve。
nocreate:如果指定,表示如果过滤器不存在,就不应该创建它。如果过滤器还不存在,则返回一个错误,而不是自动创建它。如果需要在创建过滤器和添加过滤器之间进行严格的分离,可以使用这种方法。将NOCREATE与容量或错误一起指定是一个错误。
item:指示要添加到筛选器的项的开头。必须指定此参数。

  1. 127.0.0.1:8001> bf.insert bloom_filter_test2 items key1 key2 key3
  2. 1) (integer) 1
  3. 2) (integer) 1
  4. 3) (integer) 1
  5. 127.0.0.1:8001> bf.insert bloom_filter_test2 items key1 key2 key3
  6. 1) (integer) 0
  7. 2) (integer) 0
  8. 3) (integer) 0
  9. 127.0.0.1:8001> bf.insert bloom_filter_test2 capacity 10000 error 0.00001 nocreate items key1 key2 key3
  10. 1) (integer) 0
  11. 2) (integer) 0
  12. 3) (integer) 0
  13. 127.0.0.1:8001>
  14. 127.0.0.1:8001> bf.insert bloom_filter_test2 capacity 10000 error 0.00001 nocreate items key4 key5 key6
  15. 1) (integer) 1
  16. 2) (integer) 1
  17. 3) (integer) 1
  18. 127.0.0.1:8001>

bf持久化操作

BF.SCANDUMP {key} {iter}

对bloom过滤器进行增量保存。这对于不能适应常规save和restore模型的大型bloom filter非常有用。
第一次调用这个命令时,iter的值应该是0。这个命令将返回连续的(iter, data)对,直到(0,NULL),以表示完成
python伪代码演示:

  1. chunks = []
  2. iter = 0
  3. while True:
  4. iter, data = BF.SCANDUMP(key, iter)
  5. if iter == 0:
  6. break
  7. else:
  8. chunks.append([iter, data])
  9. # Load it back
  10. for chunk in chunks:
  11. iter, data = chunk
  12. BF.LOADCHUNK(key, iter, data)

bf.scandump示例

  1. 127.0.0.1:8001> bf.scandump bloom_filter_test2 0
  2. 1) (integer) 1
  3. 2) "\x06\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x04\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00{\x14\xaeG\xe1z\x84?\x88\x16\x8a\xc5\x8c+#@\a\x00\x00\x00j\x00\x00\x00\n"
  4. 127.0.0.1:8001> bf.scandump bloom_filter_test2 1
  5. 1) (integer) 129
  6. 2) "\x00\x00\x00\x00\xa2\x00\x00\x00\x00\x00\x00B\x01\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00 \x00\x00\b\x00\x00\x00\x00\b\x00\x00@\x00\x01\x04\x18\x02\x00\x00\x00\x82\x00\x00\x80@\x00\b\x00\x00\x00\x00 \x00\x00@\x00\x00\x00\x00\x18\b\x00\b\x00\b\x00\x80B\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00 (\x00\x00\x00\x00@\x00\x00\x00\x00@\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x80\x00\x00@\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\b"
  7. 127.0.0.1:8001> bf.scandump bloom_filter_test2 129
  8. 1) (integer) 0
  9. 2) ""
  10. 127.0.0.1:8001>

blool filter数据类型的属性

bf.debug

这里可以看到,随着bloom filter元素的增加,其空间容量也在不断地增加

  1. 127.0.0.1:8001> bf.debug bloom_filter_test
  2. 1) "size:5"
  3. 2) "bytes:4194304 bits:33554432 hashes:24 hashwidth:64 capacity:1000200 size:5 ratio:1e-07"
  4. 127.0.0.1:8001>
  5. 127.0.0.1:8001>
  6. 127.0.0.1:8001> bf.debug bloom_filter_test
  7. 1) "size:128955"
  8. 2) "bytes:4194304 bits:33554432 hashes:24 hashwidth:64 capacity:1000200 size:128955 ratio:1e-07"
  9. 127.0.0.1:8001>
  10. 127.0.0.1:8001>
  11. 127.0.0.1:8001> bf.debug bloom_filter_test
  12. 1) "size:380507"
  13. 2) "bytes:4194304 bits:33554432 hashes:24 hashwidth:64 capacity:1000200 size:380507 ratio:1e-07"
  14. 127.0.0.1:8001>
  15. 127.0.0.1:8001>
  16. 127.0.0.1:8001> bf.debug bloom_filter_test
  17. 1) "size:569166"
  18. 2) "bytes:4194304 bits:33554432 hashes:24 hashwidth:64 capacity:1000200 size:569166 ratio:1e-07"
  19. 127.0.0.1:8001>
  20. 127.0.0.1:8001>
  21. 127.0.0.1:8001> bf.debug bloom_filter_test
  22. 1) "size:852316"
  23. 2) "bytes:4194304 bits:33554432 hashes:24 hashwidth:64 capacity:1000200 size:852316 ratio:1e-07"
  24. 127.0.0.1:8001>
  25. 127.0.0.1:8001>
  26. 127.0.0.1:8001> bf.debug bloom_filter_test
  27. 1) "size:1000005"
  28. 2) "bytes:4194304 bits:33554432 hashes:24 hashwidth:64 capacity:1000200 size:1000005 ratio:1e-07"
  29. 127.0.0.1:8001>

关于布隆过滤器数据类型的空间分析

redis的bigkeys选项可以分析整个实例中的big keys信息,但是无法分析出MBbloom--类型的key值得大小

这里基于Redis的debug object功能,实现对MBbloom--类型的key的统计(没有找到怎么用Python执行bf.debug原生命令的执行方式)。

  1. import redis
  2. import sys
  3. import time
  4. import random
  5. def get_bf_bigkeys():
  6. try:
  7. redis_conn = redis.StrictRedis(host='127.0.0.1', port=8001, db=0, password='******')
  8. except:
  9. print("connect redis error")
  10. sys.exit(1)
  11. dict_key = {}
  12. cursor = 1
  13. while cursor != 0:
  14. if cursor == 1:
  15. key = redis_conn.scan(cursor=0, match='*', count=5000)
  16. else:
  17. key = redis_conn.scan(cursor=cursor,match='*', count=5000)
  18. cursor = key[0]
  19. if len(key[1]) > 0:
  20. for var in key[1]:
  21. if str(redis_conn.type(var), encoding = "utf-8") == 'MBbloom--':
  22. info = redis_conn.debug_object(var)
  23. dict_key[var] = float(info['serializedlength']) / 1024 / 1024 # byte ---> mb
  24. res = sorted(dict_key.items(), key=lambda dict_key: dict_key[1], reverse=True)
  25. for i in range(10 if len(res) > 10 else len(res)):
  26. print(res[i])
  27. if __name__ == "__main__":
  28. get_bf_bigkeys()

统计结果示例如下

  1. [root@tencent02 redis8001]# python3 static_big_bf_keys.py
  2. (b'bloom_filter_test', 4.000059127807617)
  3. (b'my_bf2', 0.04577445983886719)
  4. (b'bloom_filter_test2', 0.00014019012451171875)
  5. (b'my_bf1', 0.0001220703125)
  6. [root@tencent02 redis8001]#

参考:

https://redislabs.com/blog/rebloom-bloom-filter-datatype-redis/

https://oss.redislabs.com/redisbloom/Bloom_Commands/

原文链接:http://www.cnblogs.com/wy123/p/11571215.html

 友情链接:直通硅谷  点职佳  北美留学生论坛

本站QQ群:前端 618073944 | Java 606181507 | Python 626812652 | C/C++ 612253063 | 微信 634508462 | 苹果 692586424 | C#/.net 182808419 | PHP 305140648 | 运维 608723728

W3xue 的所有内容仅供测试,对任何法律问题及风险不承担任何责任。通过使用本站内容随之而来的风险与本站无关。
关于我们  |  意见建议  |  捐助我们  |  报错有奖  |  广告合作、友情链接(目前9元/月)请联系QQ:27243702 沸活量
皖ICP备17017327号-2 皖公网安备34020702000426号