配置环境变量
$ echo 'export PATH=/usr/local/cuda/bin:$PATH' | sudo tee /etc/profile.d/cuda.sh
$ source /etc/profile
3. nvidia-container-runtime
nvidia-container-runtime 是在 runc 基础上多实现了 nvidia-container-runime-hook(现在叫 nvidia-container-toolkit),该 hook 是在容器启动后(Namespace已创建完成),容器自定义命令(Entrypoint)启动前执行。当检测到 NVIDIA_VISIBLE_DEVICES 环境变量时,会调用 libnvidia-container 挂载 GPU Device 和 CUDA Driver。如果没有检测到 NVIDIA_VISIBLE_DEVICES 就会执行默认的 runc。
下面分两步安装:
先设置 repository 和 GPG key:
$ curl -s -L https://nvidia.github.io/nvidia-container-runtime/gpgkey | sudo apt-key add -
$ curl -s -L https://nvidia.github.io/nvidia-container-runtime/$(. /etc/os-release;echo $ID$VERSION_ID)/nvidia-container-runtime.list | sudo tee /etc/apt/sources.list.d/nvidia-container-runtime.list
安装:
$ apt install nvidia-container-runtime -y
配置 Containerd 使用 Nvidia container runtime
如果 /etc/containerd
目录不存在,就先创建它:
$ mkdir /etc/containerd
生成默认配置:
$ containerd config default > /etc/containerd/config.toml
Kubernetes 使用设备插件(Device Plugins) 来允许 Pod 访问类似 GPU 这类特殊的硬件功能特性,但前提是默认的 OCI runtime 必须改成 nvidia-container-runtime
,需要修改的内容如下:
/etc/containerd/config.toml
...
[plugins."io.containerd.grpc.v1.cri".containerd]
snapshotter = "overlayfs"
default_runtime_name = "runc"
no_pivot = false
...
[plugins."io.containerd.grpc.v1.cri".containerd.runtimes]
[plugins."io.containerd.grpc.v1.cri".containerd.runtimes.runc]
runtime_type = "io.containerd.runtime.v1.linux" # 将此处 runtime_type 的值改成 io.containerd.runtime.v1.linux
...
[plugins."io.containerd.runtime.v1.linux"]
shim = "containerd-shim"
runtime = "nvidia-container-runtime" # 将此处 runtime 的值改成 nvidia-container-runtime
...
重启 containerd 服务:
$ systemctl restart containerd
4. 部署 NVIDIA GPU 设备插件
一条命令解决战斗:
$ kubectl apply -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/v0.7.1/nvidia-device-plugin.yml
查看日志:
$ kubectl -n kube-system logs nvidia-device-plugin-daemonset-xxx
2020/12/04 06:30:28 Loading NVML
2020/12/04 06:30:28 Starting FS watcher.
2020/12/04 06:30:28 Starting OS watcher.
2020/12/04 06:30:28 Retreiving plugins.
2020/12/04 06:30:28 Starting GRPC server for 'nvidia.com/gpu'
2020/12/04 06:30:28 Starting to serve 'nvidia.com/gpu' on /var/lib/kubelet/device-plugins/nvidia-gpu.sock
2020/12/04 06:30:28 Registered device plugin for 'nvidia.com/gpu' with Kubelet
可以看到设备插件部署成功了。在 Node 上面可以看到设备插件目录下的 socket:
$ ll /var/lib/kubelet/device-plugins/
total 12
drwxr-xr-x 2 root root 4096 Dec 4 01:30 ./
drwxr-xr-x 8 root root 4096 Dec 3 05:05 ../
-rw-r--r-- 1 root root 0 Dec 4 01:11 DEPRECATION
-rw------- 1 root root 3804 Dec 4 01:30 kubelet_internal_checkpoint
srwxr-xr-x 1 root root 0 Dec 4 01:11 kubelet.sock=
srwxr-xr-x 1 root root 0 Dec 4 01:11 kubevirt-kvm.sock=
srwxr-xr-x 1 root root 0 Dec 4 01:11 kubevirt-tun.sock=
srwxr-xr-x 1 root root 0 Dec 4 01:11 kubevirt-vhost-net.sock=
srwxr-xr-x 1 root root 0 Dec 4 01:30 nvidia-gpu.sock=
5. 测试 GPU
首先测试本地命令行工具 ctr,这个应该没啥问题:
$ ctr images pull docker.io/nvidia/cuda:9.0-base
$ ctr run --rm -t --gpus 0 docker.io/nvidia/cuda:9.0-base nvidia-smi nvidia-smi
Fri Dec 4 07:01:38 2020
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 440.95.01 Driver Version: 440.95.01 CUDA Version: 10.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce RTX 208... Off | 00000000:A1:00.0 Off | N/A |
| 30% 33C P8 9W / 250W | 0MiB / 11019MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
最后进入终极测试:在 Pod 中测试 GPU 可用性。先创建部署清单:
gpu-pod.yaml
apiVersion: v1
kind: Pod
metadata:
name: cuda-vector-add
spec:
restartPolicy: OnFailure
containers:
- name: cuda-vector-add
image: "k8s.gcr.io/cuda-vector-add:v0.1"
resources:
limits:
nvidia.com/gpu: 1
执行 kubectl apply -f ./gpu-pod.yaml
创建 Pod。使用 kubectl get pod
可以看到该 Pod 已经启动成功:
$ kubectl get pod
NAME READY STATUS RESTARTS AGE
cuda-vector-add 0/1 Completed 0 3s
查看 Pod 日志:
$ kubectl logs cuda-vector-add
[Vector addition of 50000 elements]
Copy input data from the host memory to the CUDA device
CUDA kernel launch with 196 blocks of 256 threads
Copy output data from the CUDA device to the host memory
Test PASSED
Done
可以看到成功运行。这也说明 Kubernetes 完成了对 GPU 资源的调用。需要注意的是,目前 Kubernetes 只支持卡级别的调度,并且显卡资源是独占,无法在多个容器之间分享。