经验首页 前端设计 程序设计 Java相关 移动开发 数据库/运维 软件/图像 大数据/云计算 其他经验
当前位置:技术经验 » 程序设计 » C++ » 查看文章
基于Opencv图像识别实现答题卡识别示例详解
来源:jb51  时间:2021/12/20 15:28:17  对本文有异议

在观看唐宇迪老师图像处理的课程中,其中有一个答题卡识别的小项目,在此结合自己理解做一个简单的总结。

1. 项目分析

首先在拿到项目时候,分析项目目的是什么,要达到什么样的目标,有哪些需要注意的事项,同时构思实验的大体流程。

图1. 答题卡测试图像

比如在答题卡识别的项目中,针对测试图片如图1 ,首先应当实现的功能是:

能够捕获答题卡中的每个填涂选项。

将获取的填涂选项与正确选项做对比计算其答题正确率。

2.项目实验

在对测试图像进行形态学操作中,首先转换为灰度图像,其次是进行减噪的高斯滤波操作。

  1. gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
  2. blurred = cv2.GaussianBlur(gray, (5, 5), 0)
  3. cv_show('blurred',blurred)

在得到高斯滤波结果后,对其进行边缘检测以及轮廓检测,用以提取答题卡所有内容的边界。

  1. edged = cv2.Canny(blurred, 75, 200)
  2. cv_show('edged',edged)
  3.  
  4. # 轮廓检测
  5. cnts, hierarchy = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,
  6. cv2.CHAIN_APPROX_SIMPLE)
  7. cv2.drawContours(contours_img,cnts,-1,(0,0,255),3)
  8. cv_show('contours_img',contours_img)
  9. docCnt = None

图2. 高斯滤波图

图3. 边缘检测图

在得到边缘检测图像后,进行外轮廓检测以及进行透视变换。

  1. # 轮廓检测
  2. cnts, hierarchy = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,
  3. cv2.CHAIN_APPROX_SIMPLE)
  4. cv2.drawContours(contours_img,cnts,-1,(0,0,255),3)
  5. cv_show('contours_img',contours_img)
  1. def four_point_transform(image, pts):
  2. # 获取输入坐标点
  3. rect = order_points(pts)
  4. (tl, tr, br, bl) = rect
  5.  
  6. # 计算输入的w和h值
  7. widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
  8. widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
  9. maxWidth = max(int(widthA), int(widthB))
  10.  
  11. heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
  12. heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
  13. maxHeight = max(int(heightA), int(heightB))
  14.  
  15. # 变换后对应坐标位置
  16. dst = np.array([
  17. [0, 0],
  18. [maxWidth - 1, 0],
  19. [maxWidth - 1, maxHeight - 1],
  20. [0, maxHeight - 1]], dtype = "float32")
  21.  
  22. # 计算变换矩阵
  23. M = cv2.getPerspectiveTransform(rect, dst)
  24. warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
  25.  
  26. # 返回变换后结果
  27. return warped
  1. # 执行透视变换
  2.  
  3. warped = four_point_transform(gray, docCnt.reshape(4, 2))
  4. cv_show('warped',warped)

在透视变换之后,需要再进行二值转换,为了找到ROI圆圈轮廓,采用二次轮廓检测执行遍历循环以及 if 判断找到所有符合筛选条件的圆圈轮廓。此处不使用霍夫变换的原因是在填涂答题卡的过程中,难免会有填涂超过圆圈区域的情况,使用霍夫变换的直线检测方式会影响实验结果的准确性。

  1. # 找到每一个圆圈轮廓
  2. cnts, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
  3. cv2.CHAIN_APPROX_SIMPLE)
  4. cv2.drawContours(thresh_Contours,cnts,-1,(0,0,255),3)
  5. cv_show('thresh_Contours',thresh_Contours)
  6. questionCnts = []
  1. # 遍历
  2. for c in cnts:
  3. # 计算比例和大小
  4. (x, y, w, h) = cv2.boundingRect(c)
  5. ar = w / float(h)
  6.  
  7. # 根据实际情况指定标准
  8. if w >= 20 and h >= 20 and ar >= 0.9 and ar <= 1.1:
  9. questionCnts.append(c)
  10.  
  11. # 按照从上到下进行排序
  12. questionCnts = sort_contours(questionCnts,
  13. method="top-to-bottom")[0]
  14. correct = 0

图4. 轮廓检测图

图5. 透视变换图

图6. 二值转换图

图7. 轮廓筛选图

在得到每个圆圈轮廓后,需要将其进行排序,排序方式为从左到右,从上到下,以图7为例,答题卡分布为五行五列,在每一列中,每行A选项的横坐标x值是相近的,而在每一行中,A、B、C、D、E的纵坐标y是相近的,因此利用这一特性来对所得到的圆圈轮廓进行排序,代码如下:

  1. def sort_contours(cnts, method="left-to-right"):
  2. reverse = False
  3. i = 0
  4. if method == "right-to-left" or method == "bottom-to-top":
  5. reverse = True
  6. if method == "top-to-bottom" or method == "bottom-to-top":
  7. i = 1
  8. boundingBoxes = [cv2.boundingRect(c) for c in cnts]
  9. (cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes),
  10. key=lambda b: b[1][i], reverse=reverse))
  11. return cnts, boundingBoxes

在得到每一个具体轮廓后,便是判断每道题所填涂的答案是否为正确答案,使用的方法为通过双层循环遍历每一个具体圆圈轮廓,通过mask图像计算非零点数量来判断答案是否正确。

  1. # 每排有5个选项
  2. for (q, i) in enumerate(np.arange(0, len(questionCnts), 5)):
  3. # 排序
  4. cnts = sort_contours(questionCnts[i:i + 5])[0] #从左到右排列,保持顺序:A B C D E
  5. bubbled = None
  6.  
  7. # 遍历每一个结果
  8. for (j, c) in enumerate(cnts):
  9. # 使用mask来判断结果
  10. mask = np.zeros(thresh.shape, dtype="uint8")
  11. cv2.drawContours(mask, [c], -1, 255, -1) #-1表示填充
  12. cv_show('mask',mask)
  13. # 通过计算非零点数量来算是否选择这个答案
  14. mask = cv2.bitwise_and(thresh, thresh, mask=mask)
  15. total = cv2.countNonZero(mask)
  16.  
  17. # 通过阈值判断
  18. if bubbled is None or total > bubbled[0]:
  19. bubbled = (total, j)
  20.  
  21. # 对比正确答案
  22. color = (0, 0, 255)
  23. k = ANSWER_KEY[q]
  24.  
  25. # 判断正确
  26. if k == bubbled[1]:
  27. color = (0, 255, 0)
  28. correct += 1
  29. # 绘图
  30. cv2.drawContours(warped, [cnts[k]], -1, color, 3)

图8. 圆圈轮廓遍历图

3.项目结果

在实验完成后,输出实验结果

  1. score = (correct / 5.0) * 100
  2. print("[INFO] score: {:.2f}%".format(score))
  3. cv2.putText(warped, "{:.2f}%".format(score), (10, 30),
  4. cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
  5. cv2.imshow("Exam", warped)
  6. cv2.waitKey(0)
  1. Connected to pydev debugger (build 201.6668.115)
  2. [INFO] score: 100.00%
  3.  
  4. Process finished with exit code 0

图9. 答题卡识别结果图

总结

在处理答题卡识别小项目中,个人觉得重点有以下几个方面:

  1. 图像的形态学操作,处理的每一步都应该预先思考,选择最合适的处理方式,如:未采用霍夫变换而使用了二次轮廓检测。
  2. 利用mask图像对比答案正确与否,通过判断非零像素值的数量来进行抉择。
  3. 巧妙利用双层 for 循环以及 if 语句遍历所有圆圈轮廓,排序之后进行答案比对。?

以上就是基于Opencv图像识别实现答题卡识别示例详解的详细内容,更多关于Opencv答题卡识别的资料请关注w3xue其它相关文章!

 友情链接:直通硅谷  点职佳  北美留学生论坛

本站QQ群:前端 618073944 | Java 606181507 | Python 626812652 | C/C++ 612253063 | 微信 634508462 | 苹果 692586424 | C#/.net 182808419 | PHP 305140648 | 运维 608723728

W3xue 的所有内容仅供测试,对任何法律问题及风险不承担任何责任。通过使用本站内容随之而来的风险与本站无关。
关于我们  |  意见建议  |  捐助我们  |  报错有奖  |  广告合作、友情链接(目前9元/月)请联系QQ:27243702 沸活量
皖ICP备17017327号-2 皖公网安备34020702000426号