经验首页 前端设计 程序设计 Java相关 移动开发 数据库/运维 软件/图像 大数据/云计算 其他经验
当前位置:技术经验 » 程序设计 » C++ » 查看文章
C++实现二分法求方程近似解
来源:jb51  时间:2021/5/10 8:45:46  对本文有异议

二分法是一种求解方程近似根的方法。对于一个函数 f(x)f(x),使用二分法求 f(x)f(x) 近似解的时候,我们先设定一个迭代区间(在这个题目上,我们之后给出了的两个初值决定的区间 [-20,20]),区间两端自变量 x 的值对应的 f(x) 值是异号的,之后我们会计算出两端 x 的中点位置 x' 所对应的 f(x') ,然后更新我们的迭代区间,确保对应的迭代区间的两端 x 的值对应的 f(x) 值还会是异号的。

重复这个过程直到我们某一次中点值 x' 对应的 f(x') < f(x′)<ϵ (题目中可以直接用EPSILON)就可以将这个 x′ 作为近似解返回给 main 函数了。

例如:

上面所示的一个迭代过程的第一次的迭代区间是 [a1​,b1​],取中点 b2​,然后第二次的迭代区间是 [a1​,b2​],再取中点 a2​,然后第三次的迭代区间是 [a2​,b2​],然后取 a3​,然后第四次的迭代区间是[a3​,b2​],再取红色中点 c,我们得到发现 f(c) 的值已经小于ϵ,输出c 作为近似解。

在这里,我们将用它实现对形如 px+q=0 的一元一次方程的求解。

在这里,你完成的程序将被输入两个正整数 p 和 q(你可以认为测评机给出的 0<∣p∣≤1000 且0<∣q∣≤1000),程序需要用二分法求出 px+q=0 的近似解。

输入格式

测评机会反复运行你的程序。每次程序运行时,输入为一行,包括一组被空格分隔开的符合描述的正整数 p 和 q。你可以认为输入数据构成的方程 px+q=0 都是有解且解在[−20,20] 的区间内。

输出格式

输出为一行,包括一个数字。为方程 px+q=0 的近似解。请使用四舍五入的方式保留小数点后 4 位小数。

样例输入1

55 9

样例输出1

-0.1636

样例输入2

-22 4

样例输出2

0.1818 

代码:

  1. #include <cstdio>
  2. #include <cmath>
  3. #define EPSILON 1e-7
  4. double bisection(int p, int q, double (*func)(int, int, double));
  5. double f(int p, int q, double x);
  6. int main() {
  7. int p;
  8. int q;
  9. scanf("%d %d", &p, &q);
  10. printf("%.4lf\n", bisection(p, q, f));
  11. return 0;
  12. }
  13. double bisection(int p, int q, double (*func)(int, int, double)) {
  14. double x1 = -20;
  15. double x2 = 20;
  16. double x = 0;
  17. while(fabs((*func)(p,q,x))>EPSILON)
  18. {
  19. x = (x1+x2)/2.0;
  20. double fx1 = (*func)(p,q,x1);
  21. double fx = (*func)(p,q,x);
  22. if(fx*fx1>0)
  23. {x1 = x;}
  24. else
  25. {x2 = x;}
  26. }
  27. return x;
  28. }
  29. double f(int p, int q, double x) {
  30. return p * x + q;
  31. }

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持w3xue。

 友情链接:直通硅谷  点职佳  北美留学生论坛

本站QQ群:前端 618073944 | Java 606181507 | Python 626812652 | C/C++ 612253063 | 微信 634508462 | 苹果 692586424 | C#/.net 182808419 | PHP 305140648 | 运维 608723728

W3xue 的所有内容仅供测试,对任何法律问题及风险不承担任何责任。通过使用本站内容随之而来的风险与本站无关。
关于我们  |  意见建议  |  捐助我们  |  报错有奖  |  广告合作、友情链接(目前9元/月)请联系QQ:27243702 沸活量
皖ICP备17017327号-2 皖公网安备34020702000426号