经验首页 前端设计 程序设计 Java相关 移动开发 数据库/运维 软件/图像 大数据/云计算 其他经验
当前位置:技术经验 » Java相关 » Java » 查看文章
JavaCV人脸识别三部曲之一:视频中的人脸保存为图片
来源:cnblogs  作者:程序员欣宸  时间:2023/6/28 8:49:55  对本文有异议

欢迎访问我的GitHub

这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos

关于人脸识别

  • 本文是《JavaCV人脸识别三部曲》的第一篇,在《JavaCV的摄像头实战之八:人脸检测》一文中,实现了检测人脸并用方框标注出来,但仅框出人脸作用不大,最好是识别出此人的身份,这样就能做很多事情了,例如签到、告警等,这就是接下来咱们要挑战的人脸识别

  • 人脸识别涉及到两个步骤:训练和识别,接下来简单说明解释一下

  • 先看什么是训练,如下图,用两位天王的六张照片来训练,一共两个类别,训练完成后得到模型文件faceRecognizer.xml
    在这里插入图片描述

  • 训练成功后, 我们拿一张新的照片给模型去识别,得到的结果是训练时的类别,如此识别完成,我们已确定了新照片的身份:
    在这里插入图片描述

  • 下面用流程图将训练和识别说得更详细一些:
    在这里插入图片描述

关于《JavaCV人脸识别三部曲》

《JavaCV人脸识别三部曲》一共三篇文章,内容如下:

  1. 《视频中的人脸保存为图片》:本篇介绍如何通过JavaCV将摄像头中的每个人脸都检测出来,并且把每个人脸保存为图片,这种方法可以让我们快速获取大量人脸照片用于训练
  2. 《训练》:讲述如何用分类好的照片去训练模型
  3. 《识别和预览》:拿到训练好的模型,去识别视频中每一帧的人脸,把结果标注到图片上预览
  • 整个三部曲也是《JavaCV的摄像头实战》系列的一部分,分别是《JavaCV的摄像头实战》系列的的第九、第十、第十一篇

本篇概览

  • 本篇要做的事情就是把训练用的照片准备好
  • 您可能会疑惑:我自己去找一些照片不就行了吗?去网上搜、去相册搜、去拍照不都可以吗?没错,只要找到您想识别的人脸即可,而本篇介绍的是另一种方法:借助摄像头检测人脸,然后将人脸大小的照片保存在硬盘,用这些照片来训练,实测多张照片训练处的模型在检测新照片时效果更好
  • 具体做法如下:
  1. 写个程序,对摄像头的照片做人脸检测,每个检测到的人脸,都作一张图片保存,注意不是摄像头视频帧的完整图片,而是检测出每张人脸,把这个人脸的矩形作为图片保存,而且保存的是灰度图片,不是彩色图片(训练和检测只需要灰度图片)
  2. 然后找个没人的地方运行程序,一个人对着摄像头,开始......搔首弄姿,各种光线明暗、各种角度、各种表情都用上,作为图片保存
  • 用这些图片训练出的模型,由于覆盖了各种亮度、角度、表情,最终的识别效果会更好
  • 接下来我们就来写这段程序吧

源码下载

名称 链接 备注
项目主页 https://github.com/zq2599/blog_demos 该项目在GitHub上的主页
git仓库地址(https) https://github.com/zq2599/blog_demos.git 该项目源码的仓库地址,https协议
git仓库地址(ssh) git@github.com:zq2599/blog_demos.git 该项目源码的仓库地址,ssh协议
  • 这个git项目中有多个文件夹,本篇的源码在javacv-tutorials文件夹下,如下图红框所示:
    在这里插入图片描述
  • javacv-tutorials里面有多个子工程,《JavaCV的摄像头实战》系列的代码在simple-grab-push工程下:
    在这里插入图片描述

编码:检测服务

  • 先定义一个检测有关的接口DetectService.java,如下,主要是定义了三个方法init、convert、releaseOutputResource,其中init用于初始化检测服务,convert负责处理单个帧(本篇就是检测出人脸、把人脸照片保存在硬盘),releaseOutputResource在结束的时候被执行,用于释放资源,另外还有个静态方法buildGrayImage,很简单,生成灰度图片对应的Mat对象:
  1. package com.bolingcavalry.grabpush.extend;
  2. import com.bolingcavalry.grabpush.Constants;
  3. import org.bytedeco.javacv.Frame;
  4. import org.bytedeco.javacv.OpenCVFrameConverter;
  5. import org.bytedeco.opencv.opencv_core.*;
  6. import org.bytedeco.opencv.opencv_objdetect.CascadeClassifier;
  7. import static org.bytedeco.opencv.global.opencv_core.CV_8UC1;
  8. import static org.bytedeco.opencv.global.opencv_imgcodecs.imwrite;
  9. import static org.bytedeco.opencv.global.opencv_imgproc.*;
  10. /**
  11. * @author willzhao
  12. * @version 1.0
  13. * @description 检测工具的通用接口
  14. * @date 2021/12/5 10:57
  15. */
  16. public interface DetectService {
  17. /**
  18. * 根据传入的MAT构造相同尺寸的MAT,存放灰度图片用于以后的检测
  19. * @param src 原始图片的MAT对象
  20. * @return 相同尺寸的灰度图片的MAT对象
  21. */
  22. static Mat buildGrayImage(Mat src) {
  23. return new Mat(src.rows(), src.cols(), CV_8UC1);
  24. }
  25. /**
  26. * 初始化操作,例如模型下载
  27. * @throws Exception
  28. */
  29. void init() throws Exception;
  30. /**
  31. * 得到原始帧,做识别,添加框选
  32. * @param frame
  33. * @return
  34. */
  35. Frame convert(Frame frame);
  36. /**
  37. * 释放资源
  38. */
  39. void releaseOutputResource();
  40. }
  • 然后就是DetectService的实现类DetectAndSaveService.java,完整代码如下,有几处要注意的地方稍后提到:
  1. package com.bolingcavalry.grabpush.extend;
  2. import com.bolingcavalry.grabpush.Constants;
  3. import lombok.extern.slf4j.Slf4j;
  4. import org.bytedeco.javacpp.Loader;
  5. import org.bytedeco.javacv.Frame;
  6. import org.bytedeco.javacv.OpenCVFrameConverter;
  7. import org.bytedeco.opencv.opencv_core.*;
  8. import org.bytedeco.opencv.opencv_objdetect.CascadeClassifier;
  9. import java.io.File;
  10. import java.net.URL;
  11. import java.text.SimpleDateFormat;
  12. import java.util.Date;
  13. import java.util.concurrent.atomic.AtomicInteger;
  14. import static org.bytedeco.opencv.global.opencv_imgcodecs.imwrite;
  15. import static org.bytedeco.opencv.global.opencv_imgproc.*;
  16. /**
  17. * @author willzhao
  18. * @version 1.0
  19. * @description 检测人脸并保存到硬盘的服务
  20. * @date 2021/12/3 8:09
  21. */
  22. @Slf4j
  23. public class DetectAndSaveService implements DetectService {
  24. /**
  25. * 每一帧原始图片的对象
  26. */
  27. private Mat grabbedImage = null;
  28. /**
  29. * 原始图片对应的灰度图片对象
  30. */
  31. private Mat grayImage = null;
  32. /**
  33. * 分类器
  34. */
  35. private CascadeClassifier classifier;
  36. /**
  37. * 转换器
  38. */
  39. private OpenCVFrameConverter.ToMat converter = new OpenCVFrameConverter.ToMat();
  40. /**
  41. * 模型文件的下载地址
  42. */
  43. private String modelFileUrl;
  44. /**
  45. * 存放人脸图片的位置
  46. */
  47. private String basePath;
  48. /**
  49. * 记录图片总数
  50. */
  51. private final AtomicInteger num = new AtomicInteger();
  52. /**
  53. * 训练的图片尺寸
  54. */
  55. Size size = new Size(Constants.RESIZE_WIDTH, Constants.RESIZE_HEIGHT);
  56. /**
  57. * 构造方法,在此指定模型文件的下载地址
  58. * @param modelFileUrl 人脸检测模型地址
  59. * @param basePath 检测出的人脸小图在硬盘上的存放地址
  60. */
  61. public DetectAndSaveService(String modelFileUrl, String basePath) {
  62. this.modelFileUrl = modelFileUrl;
  63. // 图片保存在硬盘的位置,注意文件名的固定前缀是当前的年月日时分秒
  64. this.basePath = basePath
  65. + new SimpleDateFormat("yyyyMMddHHmmss").format(new Date())
  66. + "-";
  67. }
  68. /**
  69. * 音频采样对象的初始化
  70. * @throws Exception
  71. */
  72. @Override
  73. public void init() throws Exception {
  74. // 下载模型文件
  75. URL url = new URL(modelFileUrl);
  76. File file = Loader.cacheResource(url);
  77. // 模型文件下载后的完整地址
  78. String classifierName = file.getAbsolutePath();
  79. // 根据模型文件实例化分类器
  80. classifier = new CascadeClassifier(classifierName);
  81. if (classifier == null) {
  82. log.error("Error loading classifier file [{}]", classifierName);
  83. System.exit(1);
  84. }
  85. }
  86. @Override
  87. public Frame convert(Frame frame) {
  88. // 由帧转为Mat
  89. grabbedImage = converter.convert(frame);
  90. // 灰度Mat,用于检测
  91. if (null==grayImage) {
  92. grayImage = DetectService.buildGrayImage(grabbedImage);
  93. }
  94. String filePath = basePath + num.incrementAndGet();
  95. // 进行人脸识别,根据结果做处理得到预览窗口显示的帧
  96. return detectAndSave(classifier, converter, frame, grabbedImage, grayImage, filePath , size);
  97. }
  98. /**
  99. * 程序结束前,释放人脸识别的资源
  100. */
  101. @Override
  102. public void releaseOutputResource() {
  103. if (null!=grabbedImage) {
  104. grabbedImage.release();
  105. }
  106. if (null!=grayImage) {
  107. grayImage.release();
  108. }
  109. if (null==classifier) {
  110. classifier.close();
  111. }
  112. }
  113. /**
  114. *
  115. * @param classifier 分类器
  116. * @param converter 转换工具
  117. * @param rawFrame 原始帧
  118. * @param grabbedImage 原始图片的Mat对象
  119. * @param grayImage 原始图片对应的灰度图片的Mat对象
  120. * @param basePath 图片的基本路径
  121. * @param size 训练时要求的图片大小
  122. * @return
  123. */
  124. static Frame detectAndSave(CascadeClassifier classifier,
  125. OpenCVFrameConverter.ToMat converter,
  126. Frame rawFrame,
  127. Mat grabbedImage,
  128. Mat grayImage,
  129. String basePath,
  130. Size size) {
  131. // 当前图片转为灰度图片
  132. cvtColor(grabbedImage, grayImage, CV_BGR2GRAY);
  133. // 存放检测结果的容器
  134. RectVector objects = new RectVector();
  135. // 开始检测
  136. classifier.detectMultiScale(grayImage, objects);
  137. // 检测结果总数
  138. long total = objects.size();
  139. // 如果没有检测到结果就提前返回
  140. if (total<1) {
  141. return rawFrame;
  142. }
  143. // 假设现在是一个人对着摄像头,因为此时检测的结果如果大于1,显然是检测有问题
  144. if (total>1) {
  145. return rawFrame;
  146. }
  147. Mat faceMat;
  148. // 如果有检测结果,就根据结果的数据构造矩形框,画在原图上
  149. // 前面的判断确保了此时只有一个人脸
  150. Rect r = objects.get(0);
  151. // 从完整的灰度图中取得一个矩形小图的Mat对象
  152. faceMat = new Mat(grayImage, r);
  153. // 训练时用的图片尺寸是固定的,因此这里要调整大小
  154. resize(faceMat, faceMat, size);
  155. // 图片的保存位置
  156. String imagePath = basePath + "." + Constants.IMG_TYPE;
  157. // 保存图片到硬盘
  158. imwrite(imagePath, faceMat);
  159. // 人脸的位置信息
  160. int x = r.x(), y = r.y(), w = r.width(), h = r.height();
  161. // 在人脸上画矩形
  162. rectangle(grabbedImage, new Point(x, y), new Point(x + w, y + h), Scalar.RED, 1, CV_AA, 0);
  163. // 释放检测结果资源
  164. objects.close();
  165. // 将标注过的图片转为帧,返回
  166. return converter.convert(grabbedImage);
  167. }
  168. }
  • 上述代码有几处要注意:
  1. detectAndSave方法中,当前照片检测出的人脸数如果大于1就提前返回不做处理了,这是因为假定运行程序的时候,摄像头前面只有一个人,所以如果检测出超过一张人脸,就认为当前照片的检测不准确,就不再处理当前照片了(实际使用中发现常有检测失误的情况,例如把一个矩形盒子检测为人脸),这个提前返回的逻辑,您可以根据自己的环境去调整
  2. imwrite方法可以将Mat以图片的形式保存到硬盘
  3. 保存文件到磁盘前调用了resize方法,将图片调整为164*164大小,这是因为后面的训练和检测统一使用该尺寸
  • 现在核心代码已经写完,需要再写一些代码来使用DetectAndSaveService

编码:运行框架

  • 《JavaCV的摄像头实战之一:基础》创建的simple-grab-push工程中已经准备好了父类AbstractCameraApplication,所以本篇继续使用该工程,创建子类实现那些抽象方法即可
  • 编码前先回顾父类的基础结构,如下图,粗体是父类定义的各个方法,红色块都是需要子类来实现抽象方法,所以接下来,咱们以本地窗口预览为目标实现这三个红色方法即可:
    在这里插入图片描述
  • 新建文件PreviewCameraWithDetectAndSave.java,这是AbstractCameraApplication的子类,其代码很简单,接下来按上图顺序依次说明
  • 先定义CanvasFrame类型的成员变量previewCanvas,这是展示视频帧的本地窗口:
  1. protected CanvasFrame previewCanvas
  • 把前面创建的DetectService作为成员变量,后面检测的时候会用到:
  1. /**
  2. * 检测工具接口
  3. */
  4. private DetectService detectService;
  • PreviewCameraWithDetectAndSave的构造方法,接受DetectService的实例:
  1. /**
  2. * 不同的检测工具,可以通过构造方法传入
  3. * @param detectService
  4. */
  5. public PreviewCameraWithDetectAndSave(DetectService detectService) {
  6. this.detectService = detectService;
  7. }
  • 然后是初始化操作,可见是previewCanvas的实例化和参数设置:
  1. @Override
  2. protected void initOutput() throws Exception {
  3. previewCanvas = new CanvasFrame("摄像头预览,检测人脸并保存在硬盘", CanvasFrame.getDefaultGamma() / grabber.getGamma());
  4. previewCanvas.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
  5. previewCanvas.setAlwaysOnTop(true);
  6. // 检测服务的初始化操作
  7. detectService.init();
  8. }
  • 接下来是output方法,定义了拿到每一帧视频数据后做什么事情,这里调用了detectService.convert检测人脸并保存图片,然后在本地窗口显示:
  1. @Override
  2. protected void output(Frame frame) {
  3. // 原始帧先交给检测服务处理,这个处理包括物体检测,再将检测结果标注在原始图片上,
  4. // 然后转换为帧返回
  5. Frame detectedFrame = detectService.convert(frame);
  6. // 预览窗口上显示的帧是标注了检测结果的帧
  7. previewCanvas.showImage(detectedFrame);
  8. }
  • 最后是处理视频的循环结束后,程序退出前要做的事情,先关闭本地窗口,再释放检测服务的资源:
  1. @Override
  2. protected void releaseOutputResource() {
  3. if (null!= previewCanvas) {
  4. previewCanvas.dispose();
  5. }
  6. // 检测工具也要释放资源
  7. detectService.releaseOutputResource();
  8. }
  • 由于检测有些耗时,所以两帧之间的间隔时间要低于普通预览:
  1. @Override
  2. protected int getInterval() {
  3. return super.getInterval()/8;
  4. }
  • 至此,功能已开发完成,再写上main方法,在实例化DetectAndSaveService的时候注意入参有两个,第一个是人脸检测模型的下载地址,第二个是人脸照片保存在本地的位置,还有action方法的参数1000表示预览持续时间是1000秒:
  1. public static void main(String[] args) {
  2. String modelFileUrl = "https://raw.github.com/opencv/opencv/master/data/haarcascades/haarcascade_frontalface_alt.xml";
  3. new PreviewCameraWithDetectAndSave(
  4. new DetectAndSaveService(
  5. modelFileUrl,
  6. "E:\\temp\\202112\\18\\001\\man"))
  7. .action(1000);
  8. }

抓取第一个人的照片

  • 运行main方法,然后请群众演员A登场,看着他一个人对着摄像头,开始......搔首弄姿,各种光线明暗、各种角度、各种表情都用上吧,哎,不忍直视...

  • 由于开启了预览窗口,因此可以看到摄像头拍摄的效果,出现红框的矩形最终都会被保存为图片,请注意调整角度和表情,群众演员A好像很热衷于自拍,玩得不亦乐乎,好吧,让他放飞自我:
    在这里插入图片描述

  • 检测的图片到了一定数量就可以结束了,我这里保存了259张,如下图:
    在这里插入图片描述

  • 对以上照片,建议是用肉眼检查一遍所有照片,把不是人脸的全部删除,我发现了十多张不是人脸的照片,例如下面这张把脸上的一部分识别成了人脸,显然是有问题的,这样的照片就删除吧,不要用在训练了:
    在这里插入图片描述

  • 上述照片全部保存在E:\temp\202112\18\001\man目录下

抓取第二个人的照片

  • 修改代码,把main方法中存放图片的目录改成E:\temp\202112\18\001\woman,然后再次运行程序,请群众演员B登场,恳求她像前一位群众演员那样一个人对着摄像头,开始......搔首弄姿,各种光线明暗、各种角度、各种表情都用上吧

  • 于是,我们又顺利拿到第二位群众演员的大量人脸图片,记得要肉眼观察每一张照片,把不准确的都删除掉

  • 至此,借助前面编写的程序,我们轻松拿到了两位群众演员的大量人脸照片,其中A的照片保存在E:\temp\202112\18\001\man,B的照片保存在E:\temp\202112\18\001\woman
    在这里插入图片描述

  • 至此,本篇的任务已经完成,下一篇会用这些照片进行训练,为最终的识别做好准备;

欢迎关注博客园:程序员欣宸

学习路上,你不孤单,欣宸原创一路相伴...

原文链接:https://www.cnblogs.com/bolingcavalry/p/17510382.html

 友情链接:直通硅谷  点职佳  北美留学生论坛

本站QQ群:前端 618073944 | Java 606181507 | Python 626812652 | C/C++ 612253063 | 微信 634508462 | 苹果 692586424 | C#/.net 182808419 | PHP 305140648 | 运维 608723728

W3xue 的所有内容仅供测试,对任何法律问题及风险不承担任何责任。通过使用本站内容随之而来的风险与本站无关。
关于我们  |  意见建议  |  捐助我们  |  报错有奖  |  广告合作、友情链接(目前9元/月)请联系QQ:27243702 沸活量
皖ICP备17017327号-2 皖公网安备34020702000426号