经验首页 前端设计 程序设计 Java相关 移动开发 数据库/运维 软件/图像 大数据/云计算 其他经验
当前位置:技术经验 » 程序设计 » Python » 查看文章
欧几里得算法/欧几里得扩展算法-python - Glycine-a1
来源:cnblogs  作者:Glycine-a1  时间:2018/10/25 9:27:50  对本文有异议

说在开头。

出于对欧几里得的尊重,先简单介(cou)绍(ge)一(zi)下(shu).。

欧几里得,古希腊人,数学家。他活跃于托勒密一世时期的亚历山大里亚,被称为“几何之父”。

他最著名著作几何原本》是欧洲数学的基础,提出五大公设,欧几里得几何,被广泛的认为是历史上最成功的教科书。

欧几里得也写了一些关于透视圆锥曲线球面几何学数论的作品。(https://baike.baidu.com/item/欧几里得/182343?fr=aladdin)

----------------------------------华丽的分割线-------------------------------------

以下都是自己在看书的时候自己想的一些思路,总结。

如有雷同纯属意外,如有异议可以py(仅限妹纸)。

 

欧几里得算法,也就是所谓的辗转相除法。人话就是,用来求最大公约数的方法。

证明:gcd(a,b)= gcd(b,a%b)    

(gcd(a,b),ab的最大公约数;a%b,求模运算,也就是求余数运算。比如7%2=1。)

 

证明过程:

设正整数a,b(a>b)。

设:gcd(a,b)= c  (我就要设c)

则有:c|a ,c|b  (|,表示可以整除)

设: a = bx + a%b  (x为整数,因为这是求余运算,emmm,这样说应该够平易近人了吧)

则有:a%b = a - bx  (别说恒等变换不知道。233333)

因为:c|b  则 c|bx  (因为c|b=k(k为整数),则kx为整数,这样说够清楚了吧。emmmm)

则:(a%b)/c = (a - bx)/ c    ====》  (a%b)/c = a/c - bx/c 

因为:c|a , c|bx

故:a/c,bx/c都为整数,所以a/c - bx/c 也是整数。所以(a%b)也可以被c整数。

即:c |(a%b)

又因为:c|b

故:gcd(b,a%b)= c
则:gcd(a,b)= gcd(b,a%b) 得证。(这证明过程,我就不信全网还有比这写的更清楚的。)

 

证明完这个我们就可以通过迭代,反复相除(辗转相除)来求ab的最大公约数了。

emmm,为什么就可以了呢。因为gcd(a,b)= gcd(b,a%b)  就是一个反复的过程。

比如我可以继续写:gcd(a,b)= gcd(b,a%b) = gcd(a%b,b%(a%b))=gcd(r1,r2)=·······=gcd(rn-1,rn)(rn=rn-2%rn-1

这样是不是可以更清楚点了。。

 

代码实现(递归实现

1、递归操作:辗转相除

2、递归结束操作:余数为0

"""

这只是一个简单版本。

比如,对没有最大公约数的情况并没有做判断。

"""

 

  1. def gcd(a,b):
    if a < b:
    a, b = b, a
    if a % b != 0:
    return gcd(b,a%b)
    return b

    ------------------------------分割线-------------------------------------
    回家睡觉。明天再说。困死了。
    先给出扩展欧几里得扩展算法实现。有空再说。
  1. """
    欧几里得扩展
    求ax+by=z通解
    """
    # def eucild_ex(a,b):
    # if b == 0:
    # x = 1
    # y = 0
    # return x,y,a
    # (x,y,r) = eucild_ex(b,a % b)
    # tmp = x
    # x = y
    # y = tmp - int(a/b)*y
    # return (x,y,r)

 友情链接:直通硅谷  点职佳  北美留学生论坛

本站QQ群:前端 618073944 | Java 606181507 | Python 626812652 | C/C++ 612253063 | 微信 634508462 | 苹果 692586424 | C#/.net 182808419 | PHP 305140648 | 运维 608723728

W3xue 的所有内容仅供测试,对任何法律问题及风险不承担任何责任。通过使用本站内容随之而来的风险与本站无关。
关于我们  |  意见建议  |  捐助我们  |  报错有奖  |  广告合作、友情链接(目前9元/月)请联系QQ:27243702 沸活量
皖ICP备17017327号-2 皖公网安备34020702000426号