1.数据可视化
kaggle中数据解释:https://www.kaggle.com/c/titanic/data
数据形式:

读取数据,并显示数据信息
- data_train = pd.read_csv("./data/train.csv")
- print(data_train.info())
数据结果如下:
- <class 'pandas.core.frame.DataFrame'>
- RangeIndex: 891 entries, 0 to 890
- Data columns (total 12 columns):
- PassengerId 891 non-null int64
- Survived 891 non-null int64
- Pclass 891 non-null int64
- Name 891 non-null object
- Sex 891 non-null object
- Age 714 non-null float64
- SibSp 891 non-null int64
- Parch 891 non-null int64
- Ticket 891 non-null object
- Fare 891 non-null float64
- Cabin 204 non-null object
- Embarked 889 non-null object
数据解释:
- PassengerId => 乘客ID
- Survive => 乘客是否生还(仅在训练集中有,测试集中没有)
- Pclass => 乘客等级(1/2/3等舱位)
- Name => 乘客姓名
- Sex => 性别
- Age => 年龄
- SibSp => 堂兄弟/妹个数
- Parch => 父母与小孩个数
- Ticket => 船票信息
- Fare => 票价
- Cabin => 客舱
- Embarked => 登船港口
1.1 生存/死亡人数统计

- # # 统计 存活/死亡 人数
- def sur_die_analysis(data_train):
- fig = plt.figure()
- fig.set(alpha=0.2) # 设定图表颜色alpha参数
- data_train.Survived.value_counts().plot(kind='bar')# 柱状图
- plt.title(u"获救情况 (1为获救)") # 标题
- plt.ylabel(u"人数")
- plt.show()
1.2 PClass

- # PClass
- def pclass_analysis(data_train):
- fig = plt.figure()
- fig.set(alpha=0.2) # 设定图表颜色alpha参数
- sur_data = data_train.Pclass[data_train.Survived == 1].value_counts()
- die_data = data_train.Pclass[data_train.Survived == 0].value_counts()
- pd.DataFrame({'Survived':sur_data,'Died':die_data}).plot(kind='bar')
- plt.ylabel(u"人数")
- plt.title(u"乘客等级分布")
- plt.show()
通过数据分布可以很明显的看出 Pclass 为 1/2 的乘客存活率比 3 的高很多
1.3 Sex

- #Sex
- def sex_analysis(data_train):
- no_survived_g = data_train.Sex[data_train.Survived == 0].value_counts()
- no_survived_g.to_csv("no_survived_g.csv")
- survived_g = data_train.Sex[data_train.Survived == 1].value_counts()
- df_g = pd.DataFrame({'Survived': survived_g, 'Died': no_survived_g})
- df_g.plot(kind='bar', stacked=True)
- plt.title('性别存活率分析')
- plt.xlabel('People')
- plt.ylabel('Survive')
- plt.show()
女性的存活率比男性高
1.4 Age

- # age : 将年龄分成十段,分别统计 存活人数和死亡人数
- def age_analysis(data_train):
- data_series = pd.DataFrame(columns=['Survived', 'dies'])
- cloms = []
- for num in range(0, 10):
- clo = "" + str(num * 10) + "-" + str((num + 1) * 10)
- cloms.append(clo)
- sur_df = data_train.Age[(10 * (num + 1) > data_train.Age) & (10 * num < data_train.Age) & (data_train.Survived == 1)].shape[0]
- die_df = data_train.Age[(10 * (num + 1) > data_train.Age) & (10 * num < data_train.Age) & (data_train.Survived == 0)].shape[0]
- data_series.loc[num] = [sur_df,die_df]
- data_series.index = cloms
- data_series.plot(kind='bar', stacked=True)
- plt.ylabel(u"存活率") # 设定纵坐标名称
- plt.grid(b=True, which='major', axis='y')
- plt.title(u"按年龄看获救分布")
- plt.show()
低年龄段的获救的百分比明显占的比例较多
1.5 Family : SibSp + Parch
定义Family项,代表家庭成员数量,并离散分类为三个等级:
0: 代表没有任何成员
1: 1-4
2: > 4

- # Family: Sibsp + Parch 家庭成员人数
- def family_analysis(data_train):
- data_train['Family'] = data_train['SibSp'] + data_train['Parch']
- data_train.loc[(data_train.Family == 0), 'Family'] = 0
- data_train.loc[((data_train.Family > 0) & (data_train.Family < 4)), 'Family'] = 1
- data_train.loc[((data_train.Family >= 4)), 'Family'] = 2
-
- no_survived_g = data_train.Family[data_train.Survived == 0].value_counts()
- survived_g = data_train.Family[data_train.Survived == 1].value_counts()
- df_g = pd.DataFrame({'Survived': survived_g, 'Died': no_survived_g})
- df_g.plot(kind='bar', stacked=True)
- plt.title('家庭成员分析')
- plt.xlabel('等级:0-无 1-(1~4) 2-(>4)')
- plt.ylabel('存活情况')
- plt.show()
由于数据分布很不均衡,sibsp 是否和存活率的关系,可以将所有列都除以该列总人数。这里不再赘述。
1.6 Fare
费用统计:

当费用升高到一定时,存活人数已经超过了死亡人数

- # Fare
- def fare_analysis(data_train):
- # data_train.Fare[data_train.Survived == 1].plot(kind='kde')
- # data_train.Fare[data_train.Survived == 0].plot(kind='kde')
- # data_train["Fare"].plot(kind='kde')
- # plt.legend(('survived', 'died','all'), loc='best')
- # plt.show()
- data_train['NewFare'] = data_train['Fare']
- data_train.loc[(data_train.Fare < 50), 'NewFare'] = 0
- data_train.loc[((data_train.Fare>=50) & (data_train.Fare<100)), 'NewFare'] = 1
- data_train.loc[((data_train.Fare >= 100) & (data_train.Fare < 150)), 'NewFare'] = 2
- data_train.loc[((data_train.Fare >= 150) & (data_train.Fare < 200)), 'NewFare'] = 3
- data_train.loc[(data_train.Fare >= 200), 'NewFare'] = 4
- no_survived_g = data_train.NewFare[data_train.Survived == 0].value_counts()
- survived_g = data_train.NewFare[data_train.Survived == 1].value_counts()
- df_g = pd.DataFrame({'Survived': survived_g, 'Died': no_survived_g})
- df_g.plot(kind='bar', stacked=True)
- plt.title('费用-生存分析')
- plt.xlabel('费用等级')
- plt.ylabel('存活情况')
- plt.show()
很明显可以看出 费用等级较高的人存活率会高很多。
优化:
上述只是任意的选取了五个费用段,作为五类,但是具体是多少类才能最好的拟合数据?
这里可以通过聚类的方法查找最佳的分类个数,再将每个费用数据映射为其中一类:
- def fare_kmeans(data_train):
- for i in range(2,10):
- clusters = KMeans(n_clusters=i)
- clusters.fit(data_train['Fare'].values.reshape(-1,1))
- # intertia_ 参数是衡量聚类的效果,越大则表明效果越差
- print("" + str(i) + "" + str(clusters.inertia_))
打印结果:
- 2 846932.9762272763
- 3 399906.26606199215
- 4 195618.50643749788
- 5 104945.73652631264
- 6 52749.474696547695
- 7 35141.316334118805
- 8 26030.553497795216
- 9 19501.242236941747
由此可以看出看出当 类别数为 5 时分类的效果最好。所以这里将所有的费用映射到为这五类。
- #将费用进行聚类,发现 类别数为 5 时聚合的效果最好
- def fare_kmeans(data_train):
- clusters = KMeans(n_clusters=5)
- clusters.fit(data_train['Fare'].values.reshape(-1, 1))
- predict = clusters.predict(data_train['Fare'].values.reshape(-1, 1))
- print(predict)
- data_train['NewFare'] = predict
- print(data_train[['NewFare','Survived']].groupby(['NewFare'],as_index=False).mean())
- print("" + str(clusters.inertia_))
等级映射后每个等级的存活率如下:(效果明显比上面随便分类的好)
- NewFare Survived
- 0 0 0.319832
- 1 1 0.647059
- 2 2 0.606557
- 3 3 1.000000
- 4 4 0.757576
1.7 Embarked

- #Embarked 上船港口情况
- def embarked_analysis(data_train):
- no_survived_g = data_train.Embarked[data_train.Survived == 0].value_counts()
- survived_g = data_train.Embarked[data_train.Survived == 1].value_counts()
- df_g = pd.DataFrame({'Survived': survived_g, 'Died': no_survived_g})
- df_g.plot(kind='bar', stacked=True)
- plt.title('登陆港口-存活情况分析')
- plt.xlabel('Embarked')
- plt.ylabel('Survive')
- plt.show()
至于就登陆港口而言,三个港口并看不出明显的差距,C港生还率略高于S港与Q港。
2. 数据预处理
由开头部分数据信息可以看出,有几栏的数据是部分缺失的: Age / Cabin / Embarked
对于缺失数据这里选择简单填充的方式进行处理:(可以以中值/均值/众数等方式填充)
同时对费用进行分类
- def dataPreprocess(df):
- df.loc[df['Sex'] == 'male', 'Sex'] = 0
- df.loc[df['Sex'] == 'female', 'Sex'] = 1
-
- # 由于 Embarked中有两个数据未填充,需要先将数据填满
- df['Embarked'] = df['Embarked'].fillna('S')
- # 部分年龄数据未空, 填充为 均值
- df['Age'] = df['Age'].fillna(df['Age'].median())
-
- df.loc[df['Embarked']=='S', 'Embarked'] = 0
- df.loc[df['Embarked'] == 'C', 'Embarked'] = 1
- df.loc[df['Embarked'] == 'Q', 'Embarked'] = 2
-
- df['FamilySize'] = df['SibSp'] + df['Parch']
- df['IsAlone'] = 0
- df.loc[df['FamilySize']==0,'IsAlone'] = 1
- df.drop('FamilySize',axis = 1)
- df.drop('Parch',axis=1)
- df.drop('SibSp',axis=1)
- return fare_kmeans(df)
-
- def fare_kmeans(data_train):
- clusters = KMeans(n_clusters=5)
- clusters.fit(data_train['Fare'].values.reshape(-1, 1))
- predict = clusters.predict(data_train['Fare'].values.reshape(-1, 1))
- data_train['NewFare'] = predict
- data_train.drop('Fare')
- # print(data_train[['NewFare','Survived']].groupby(['NewFare'],as_index=False).mean())
- # print(" " + str(clusters.inertia_))
- return data_train
这里对与分类特征通过了普通的编码方式进行实现,也可以通过onehot编码使每种分类之间的间隔相等。
3. 特征选择
上述感性的认识了各个特征与存活率之间的关系,其实sklearn库中提供了对每个特征打分的函数,可以很方便的看出各个特征的重要性
- predictors = ["Pclass", "Sex", "Age", "NewFare", "Embarked",'IsAlone']
-
- # Perform feature selection
- selector = SelectKBest(f_classif, k=5)
- selector.fit(data_train[predictors], data_train["Survived"])
-
- # Plot the raw p-values for each feature,and transform from p-values into scores
- scores = -np.log10(selector.pvalues_)
-
- # Plot the scores. See how "Pclass","Sex","Title",and "Fare" are the best?
- plt.bar(range(len(predictors)),scores)
- plt.xticks(range(len(predictors)),predictors, rotation='vertical')
- plt.show()

上图可以看到输入的6个特征中那些特征比较重要
4. 线性回归建模
- def linearRegression(df):
- predictors = ['Pclass', 'Sex', 'Age', 'IsAlone', 'NewFare', 'Embarked']
- #predictors = ['Pclass', 'Sex', 'Age', 'IsAlone', 'NewFare', 'EmbarkedS','EmbarkedC','EmbarkedQ']
-
- alg = LinearRegression()
- X = df[predictors]
- Y = df['Survived']
- X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.2)
-
- # 打印 训练集 测试集 样本数量
- print (X_train.shape)
- print (Y_train.shape)
- print (X_test.shape)
- print (Y_test.shape)
-
- # 进行拟合
- alg.fit(X_train, Y_train)
-
- print (alg.intercept_)
- print (alg.coef_)
-
- Y_predict = alg.predict(X_test)
- Y_predict[Y_predict >= 0.5 ] = 1
- Y_predict[Y_predict < 0.5] = 0
- acc = sum(Y_predict==Y_test) / len(Y_predict)
- return acc
测试模型预测准确率: 0.79
5. 随机森林建模
选取最有价值的5个特征进行模型训练,并验证模型的效果:
- def randomForest(data_train):
- # Pick only the four best features.
- predictors = ["Pclass", "Sex", "NewFare", "Embarked", 'IsAlone']
- X_train, X_test, Y_train, Y_test = train_test_split(data_train[predictors], data_train['Survived'], test_size=0.2)
- alg = RandomForestClassifier(random_state=1, n_estimators=50, min_samples_split=8, min_samples_leaf=4)
- alg.fit(X_train, Y_train)
- Y_predict = alg.predict(X_test)
- acc = sum(Y_predict == Y_test) / len(Y_predict)
- return acc
经过测试该模型的准确率为 0.811
初步原因分析: 选取的5个特征中没有Age,Age可能因为缺失很大部分数据对预测的准确率有一定的影响。
代码已经提交git: https://github.com/lsfzlj/kaggle
欢迎指正交流
参考:
https://blog.csdn.net/han_xiaoyang/article/details/49797143
https://blog.csdn.net/CSDN_Black/article/details/80309542
https://www.kaggle.com/sinakhorami/titanic-best-working-classifier