- import tensorflow as tf
- import tensorflow.examples.tutorials.mnist.input_data as input_data
- import numpy as np
- import matplotlib.pyplot as plt
- mnist = input_data.read_data_sets("data/",one_hot = True)
- #导入Tensorflwo和mnist数据集
-
- #构建输入层
- x = tf.placeholder(tf.float32,[None,784],name='X')
- y = tf.placeholder(tf.float32,[None,10],name='Y')
- #隐藏层神经元数量
- H1_NN = 256 #第一层神经元数量
- W1 = tf.Variable(tf.random_normal([784,H1_NN])) #权重
- b1 = tf.Variable(tf.zeros([H1_NN])) #偏置项
- Y1 = tf.nn.relu(tf.matmul(x,W1)+b1) #第一层输出
- W2 = tf.Variable(tf.random_normal([H1_NN,10]))#权重
- b2 = tf.Variable(tf.zeros(10))#偏置项
- forward = tf.matmul(Y1,W2)+b2 #定义前向传播
- pred = tf.nn.softmax(forward) #激活函数输出
-
- #损失函数
- #loss_function = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred),
- # reduction_indices=1))
- #(log(0))超出范围报错
- loss_function = tf.reduce_mean(
- tf.nn.softmax_cross_entropy_with_logits(logits=forward,labels=y))
- #训练参数
- train_epochs = 50 #训练次数
- batch_size = 50 #每次训练多少个样本
- total_batch = int(mnist.train.num_examples/batch_size) #随机抽取样本
- display_step = 1 #训练情况输出
- learning_rate = 0.01 #学习率
-
- #优化器
- opimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss_function)
- #准确率函数
- correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(pred,1))
- accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
- #记录开始训练时间
- from time import time
- startTime = time()
- #初始化变量
- sess =tf.Session()
- init = tf.global_variables_initializer()
- sess.run(init)
- #训练
- for epoch in range(train_epochs):
- for batch in range(total_batch):
- xs,ys = mnist.train.next_batch(batch_size)#读取批次数据
- sess.run(opimizer,feed_dict={x:xs,y:ys})#执行批次数据训练
-
- #total_batch个批次训练完成后,使用验证数据计算误差与准确率
- loss,acc=sess.run([loss_function,accuracy],
- feed_dict={x:mnist.validation.images,
- y:mnist.validation.labels})
- #输出训练情况
- if(epoch+1) % display_step == 0:
- print("Train Epoch:",'%02d' % (epoch + 1),
- "Loss=","{:.9f}".format(loss),"Accuracy=","{:.4f}".format(acc))
- duration = time()-startTime
- print("Trian Finshed takes:","{:.2f}".format(duration))#显示预测耗时
-
- #由于pred预测结果是one_hot编码格式,所以需要转换0~9数字
- prediction_resul = sess.run(tf.argmax(pred,1),feed_dict={x:mnist.test.images})
- prediction_resul[0:10]
- #模型评估
- accu_test = sess.run(accuracy,
- feed_dict={x:mnist.test.images,y:mnist.test.labels})
- print("Accuray:",accu_test)
- compare_lists = prediction_resul == np.argmax(mnist.test.labels,1)
- print(compare_lists)
- err_lists = [i for i in range(len(mnist.test.labels)) if compare_lists[i] == False]
- print(err_lists,len(err_lists))
- index_list = []
- def print_predct_errs(labels,#标签列表
- perdiction):#预测值列表
- count = 0
- compare_lists = (perdiction == np.argmax(labels,1))
- err_lists = [i for i in range(len(labels)) if compare_lists[i] == False]
- for x in err_lists:
- index_list.append(x)
- print("index="+str(x)+
- "标签值=",np.argmax(labels[x]),
- "预测值=",perdiction[x])
- count = count+1
- print("总计:",count)
- return index_list
- print_predct_errs(mnist.test.labels,prediction_resul)
- def plot_images_labels_prediction(images,labels,prediction,index,num=25):
- fig = plt.gcf() # 获取当前图片
- fig.set_size_inches(10,12)
- if num>=25:
- num=25 #最多显示25张图片
- for i in range(0,num):
- ax = plt.subplot(5,5, i+1) #获取当前要处理的子图
-
- ax.imshow(np.reshape(images[index],(28,28)),cmap='binary')#显示第index个图像
- title = 'label=' + str(np.argmax(labels[index]))#构建该图上要显示的title
- if len(prediction)>0:
- title += 'predict= '+str(prediction[index])
-
- ax.set_title(title,fontsize=10)
- ax.set_xticks([])
- ax.set_yticks([])
- index += 1
- plt.show()
- plot_images_labels_prediction(mnist.test.images,mnist.test.labels,prediction_resul,index=index_list[100])
单纯记录一下个人代码,很基础的一个MNIST手写识别使用Tensorflwo实现,算是入门的Hello world 了,有些奇怪的问题暂时没有解决 训练次数调成40 在训练到第35次左右发生了梯度爆炸,原因未知,损失函数要使用带softmax那个,不然也会发生梯度爆炸