思考:
当我们输入这个语句的时候,Python内部是如何去创建这个对象的?
对象使用完毕,销毁的时机又是怎么确定的呢?
下面,我们以一个基本类型float为例,来分析对象从创建到销毁这整个生命周期中的行为。
1 C API
Python是用C写的,对外提供了API,让用户可以从C环境中与其交互,并且Python内部也大量使用了这些API。C API分为两类:泛型API以及特型API。
泛型API:与类型无关,属于抽象对象层,这类API的参数是PyObject *,即可以处理任意类型的对象。以PyObject_Print为例:
- // 打印浮点对象
- PyObject *fo = PyFloat_FromDouble(3.14);
- PyObject_Print(fo, stdout, 0);
- // 打印整数对象
- PyObject *lo = PyLong_FromLong(100);
- PyObject_Print(lo, stdout, 0);
特型API:与类型相关,属于具体对象层,这类API只能作用于某种类型的对象
2 对象的创建
2.1 两种创建对象的方式
Python内部一般通过两种方法创建对象:
通过C API,多用于内建类型
以浮点类型为例,Python内部提供PyFloat_FromDouble,这是一个特型C API,在这个接口内部为PyFloatObject结构体变量分配内存,并初始化相关字段:
- PyObject *
- PyFloat_FromDouble(double fval)
- {
- PyFloatObject *op = free_list;
- if (op != NULL) {
- free_list = (PyFloatObject *) Py_TYPE(op);
- numfree--;
- } else {
- op = (PyFloatObject*) PyObject_MALLOC(sizeof(PyFloatObject));
- if (!op)
- return PyErr_NoMemory();
- }
- /* Inline PyObject_New */
- (void)PyObject_INIT(op, &PyFloat_Type);
- op->ob_fval = fval;
- return (PyObject *) op;
- }
通过类型对象,多用于自定义类型
对于自定义类型,Python就无法事先提供C API了,这种情况下就只能通过类型对象中包含的元数据(分配多少内存,如何初始化等等)来创建实例对象。
由类型对象创建实例对象是一个更通用的流程,对于内建类型,除了通过C API来创建对象意外,同样也可以通过类型对象来创建。以浮点类型为例,我们通过类型对象float,创建了一个实例对象f:
- f: float = float('3.123')
2.2 由类型对象创建实例对象
思考:既然我们可以通过类型对象来创建实例对象,那么类型对象中应该存在相应的接口。
在PyType_Type中找到了tp_call字段:
- PyTypeObject PyType_Type = {
- PyVarObject_HEAD_INIT(&PyType_Type, 0)
- "type", /* tp_name */
- sizeof(PyHeapTypeObject), /* tp_basicsize */
- sizeof(PyMemberDef), /* tp_itemsize */
- (destructor)type_dealloc, /* tp_dealloc */
- // ...
- (ternaryfunc)type_call, /* tp_call */
- // ...
- };
因此,float(‘3.123’)在C层面就等价于:
- PyFloat_Type.ob_type.tp_call(&PyFloat_Type, args. kwargs)
这里大家可以思考下为什么是PyFloat_Type.ob_type——因为我们在float(‘3.14’)中是通过float这个类型对象去创建一个浮点对象,而对象的通用方法是由它对应的类型管理的,自然float的类型就是type,所以我们要找的就是type的tp_call字段。
type_call函数的C源码:(只列出部分)
- static PyObject *
- type_call(PyTypeObject *type, PyObject *args, PyObject *kwds)
- {
- PyObject *obj;
- // ...
- obj = type->tp_new(type, args, kwds);
- obj = _Py_CheckFunctionResult((PyObject*)type, obj, NULL);
- if (obj == NULL)
- return NULL;
- // ...
- type = Py_TYPE(obj);
- if (type->tp_init != NULL) {
- int res = type->tp_init(obj, args, kwds);
- if (res < 0) {
- assert(PyErr_Occurred());
- Py_DECREF(obj);
- obj = NULL;
- }
- else {
- assert(!PyErr_Occurred());
- }
- }
- return obj;
- }
其中有两个关键的步骤:(这两个步骤大家应该是很熟悉的)
- 调用类型对象的tp_new函数指针,用于申请内存;
- 如果类型对象的tp_init函数指针不为空,则会对对象进行初始化。
总结:(以float为例)
- 调用float,Python最终执行的是其类型对象type的tp_call指针指向的type_call函数。
- type_call函数调用float的tp_new函数为实例对象分配内存空间。
- type_call函数必要时进一步调用tp_init函数对实例对象进行初始化。
图示如下:

3 对象的多态性
通过类型对象创建实例对象,最后会落实到调用type_call函数,其中保存具体对象时,使用的是PyObject *obj,并没有通过一个具体的对象(例如PyFloatObject)来保存。这样做的好处是:可以实现更抽象的上层逻辑,而不用关心对象的实际类型和实现细节。(记得当初从C语言的面向过程向Java中的面向对象过度的时候,应该就是从结构体)
以对象哈希值计算为例,有这样一个函数接口:
- Py_hash_t
- PyObject_Hash(PyObject *v)
- {
- // ...
- }
对于浮点数对象和整数对象:
- PyObject *fo = PyFloatObject_FromDouble(3.14);
- PyObject_Hash(fo);
- PyObject *lo = PyLongObject_FromLong(100);
- PyObject_Hash(lo);
可以看到,对于浮点数对象和整数对象,我们计算对象的哈希值时,调用的都是PyObject_Hash()这个函数,但是对象类型不同,其行为是有区别的,哈希值计算也是如此。
那么在PyObject_Hash函数内部是如何区分的呢?
PyObject_Hash()函数具体逻辑:
- Py_hash_t
- PyObject_Hash(PyObject *v)
- {
- PyTypeObject *tp = Py_TYPE(v);
- if (tp->tp_hash != NULL)
- return (*tp->tp_hash)(v);
- /* To keep to the general practice that inheriting
- * solely from object in C code should work without
- * an explicit call to PyType_Ready, we implicitly call
- * PyType_Ready here and then check the tp_hash slot again
- */
- if (tp->tp_dict == NULL) {
- if (PyType_Ready(tp) < 0)
- return -1;
- if (tp->tp_hash != NULL)
- return (*tp->tp_hash)(v);
- }
- /* Otherwise, the object can't be hashed */
- return PyObject_HashNotImplemented(v);
- }
函数会首先通过Py_TYPE找到对象的类型,然后通过类型对象的tp_hash函数指针来调用对应的哈希计算函数。
即:PyObject_Hash()函数根据对象的类型,调用不同的函数版本,这就是多态。
4 对象的行为
除了tp_hash字段,PyTypeObject结构体还定义了很多函数指针,这些指针最终都会指向某个函数,或者为空。我们可以把这些函数指针看作是类型对象中定义的操作,这些操作决定了对应的实例对象在运行时的行为。
虽然不同的类型对象中保存了对应实例对象共有的行为,但是不同类型的对象也会存在一些共性。例如:整数对象和浮点数对象都支持加减乘除等擦欧总,元组对象和列表对象都支持下标操作。因此,我们以行为为分类标准,对对象进行分类:

Python以此为依据,为每个类别都定义了一个标准操作集:
- PyNumberMethods结构体定义了数值型操作
- PySequenceMethods结构体定义了序列型操作
- PyMappingMethods结构体定义了关联型操作
如果类型对象提供了相关的操作集,则对应的实例对象就具备对应的行为:
- typedef struct _typeobject {
- PyObject_VAR_HEAD
- const char *tp_name; /* For printing, in format "<module>.<name>" */
- Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */
- // ...
- PyNumberMethods *tp_as_number;
- PySequenceMethods *tp_as_sequence;
- PyMappingMethods *tp_as_mapping;
- // ...
- } PyTypeObject;
以float为例,类型对象PyFloat_Type的这三个字段是这样初始化的:
- PyTypeObject PyFloat_Type = {
- PyVarObject_HEAD_INIT(&PyType_Type, 0)
- "float",
- sizeof(PyFloatObject),
- // ...
- &float_as_number, /* tp_as_number */
- 0, /* tp_as_sequence */
- 0, /* tp_as_mapping */
- // ...
- };
可以看到,只有tp_as_number非空,即float对象支持数值型操作,不支持序列型操作和关联型操作。
5 引用计数
在Python中,很多场景都涉及引用计数的调整:
引用计数是Python生命周期中很关键的一个知识点,后续我会用一个单独的章节来介绍,这里咱们先按下不表,更多关于Python对象生命周期的资料请关注w3xue其它相关文章!