用法:
- matplot.pyplot.plot(*args, scalex=True, scaley=True, data=None, **kwargs)
参数解释:

x,y
- import numpy as np
- import matplotlib.pyplot as plt
-
- x = np.arange(0.2, 2.0, 0.01)
- y1 = np.sin(2*np.pi*x)
- y2 = np.sin(4*np.pi*x)
-
- plt.figure(1)
- plt.subplot(211)
- plt.plot(x,y1)
-
- plt.subplot(212)
- plt.plot(x,y2)
- plt.show()

color
Colors的值:

- import numpy as np
- import matplotlib.pyplot as plt
-
- # 需要解释下,下面两行代码是防止出现中文时,会报警告
- # 因为我们的title里面写的是中文
- plt.rcParams['font.family'] = 'SimHei'
- plt.rcParams['axes.unicode_minus']=False
- x = np.arange(0.2, 2.0, 0.01)
- y1 = np.sin(2*np.pi*x)
- y2 = np.sin(4*np.pi*x)
-
- plt.figure(1)
- plt.subplot(211)
- plt.title('不添加颜色')
- plt.plot(x,y1)
-
- plt.subplot(212)
- plt.title('添加颜色')
- plt.plot(x,y2,color='c')
- plt.show()

linstyle

- 'b' # blue markers with default shape
- 'or' # red circles
- '-g' # green solid line
- '--' # dashed line with default color
- '^k:' # black triangle_up markers connected by a dotted line
- import numpy as np
- import matplotlib.pyplot as plt
-
- plt.figsize=((10,8))
- plt.rcParams['font.family'] = 'SimHei'
- plt.rcParams['axes.unicode_minus']=False
-
- x = [1, 2, 3, 4]
- y = [1, 4, 9, 16]
-
- plt.subplot(221)
- plt.title('样式: -')
- plt.plot(x,y,'-')
-
- plt.subplot(222)
- plt.title('样式: --')
- plt.plot(x,y,'--')
-
- plt.subplot(223)
- plt.title('样式: -.')
- plt.plot(x, y, '-.')
-
- plt.subplot(224)
- plt.title('样式: :')
- plt.plot(x, y, ':')
- plt.show()

缩写方式
- import numpy as np
- import matplotlib.pyplot as plt
- x = [1, 2, 3, 4]
- y = [1, 4, 9, 16]
- plt.subplot()
- # 线形状 '-',颜色'g'
- plt.plot(x, y, '-g')
- plt.show()

marker, markersize
marker在scatter里面我已经有所解释过了,有好多种情况,可以在scatter散点图这里会将颜色和marker连接起来,可以有个很清楚的了解,并且较为清楚,也是缩写
- import matplotlib.pyplot as plt
- plt.figsize=((12,6))
- plt.rcParams['font.family'] = 'SimHei'
- plt.rcParams['axes.unicode_minus']=False
- x = [1, 2, 3, 4]
- y = [1, 4, 9, 16]
- plt.subplot(131)
- plt.title('默认情况')
- plt.plot(x, y)
-
- plt.subplot(132)
- plt.title('红色圆圈')
- # marker为o 颜色r
- plt.plot(x, y, 'or')
-
- plt.subplot(133)
- plt.title('正三角黑色')
- # marker为^ 颜色k->black
- plt.plot(x, y, '^k')
- plt.show()

label
标签,这个在所有图形中都可以使用,在这里展示下,包括之前的alpha也是,都所属**kwargs里面,在任何绘图中都可以添加,legend为图例
- import matplotlib.pyplot as plt
- import numpy as np
-
- x = np.linspace(-np.pi/2, np.pi/2, 31)
- y = np.cos(x)**3
-
- # 1) remove points where y > 0.7
- x2 = x[y <= 0.7]
- y2 = y[y <= 0.7]
-
- # 2) mask points where y > 0.7
- y3 = np.ma.masked_where(y > 0.7, y)
-
- # 3) set to NaN where y > 0.7
- y4 = y.copy()
- y4[y3 > 0.7] = np.nan
-
- plt.plot(x*0.1, y, 'o-', color='lightgrey', label='No mask')
- plt.plot(x2*0.4, y2, 'o-', label='Points removed')
- plt.plot(x*0.7, y3, 'o-', label='Masked values')
- plt.plot(x*1.0, y4, 'o-', label='NaN values')
- plt.legend()
- plt.show()

下面就是一些案例
一次性绘制三个线条图
- import numpy as np
- import matplotlib.pyplot as plt
- t = np.arange(0., 5., 0.2)
- # 红色虚线,蓝色方块,浅蓝六边形
- plt.plot(t, t, 'r--', t, t**2, 'bs', t, t**3, 'cH')
- plt.show()

- import numpy as np
- import matplotlib.pyplot as plt
- x1 = np.linspace(0.0, 5.0)
- y1 = np.cos(2 * np.pi * x1) * np.exp(-x1)
- x2 = np.linspace(0.0, 2.0)
- y2 = np.cos(2 * np.pi * x2)
- plt.subplot(211)
- plt.plot(x1, y1, 'o-')
- plt.subplot(212)
- plt.plot(x1, y1, '.-')
- plt.show()

到此这篇关于利用python绘制线型图的文章就介绍到这了,更多相关python线型图内容请搜索w3xue以前的文章或继续浏览下面的相关文章希望大家以后多多支持w3xue!