经验首页 前端设计 程序设计 Java相关 移动开发 数据库/运维 软件/图像 大数据/云计算 其他经验
当前位置:技术经验 » 程序设计 » Python » 查看文章
详解model.train()和model.eval()两种模式的原理与用法
来源:jb51  时间:2023/3/24 9:02:11  对本文有异议

一、两种模式

pytorch可以给我们提供两种方式来切换训练和评估(推断)的模式,分别是:model.train() 和 model.eval()。

一般用法是:在训练开始之前写上 model.trian() ,在测试时写上 model.eval() 。

二、功能

1. model.train()

在使用 pytorch 构建神经网络的时候,训练过程中会在程序上方添加一句model.train(),作用是 启用 batch normalization 和 dropout 。

如果模型中有BN层(Batch Normalization)和 Dropout ,需要在 训练时 添加 model.train()。

model.train() 是保证 BN 层能够用到 每一批数据 的均值和方差。对于 Dropout,model.train() 是 随机取一部分 网络连接来训练更新参数。

2. model.eval()

model.eval()的作用是 不启用 Batch Normalization 和 Dropout。

如果模型中有 BN 层(Batch Normalization)和 Dropout,在 测试时 添加 model.eval()。

model.eval() 是保证 BN 层能够用 全部训练数据 的均值和方差,即测试过程中要保证 BN 层的均值和方差不变。对于 Dropout,model.eval() 是利用到了 所有 网络连接,即不进行随机舍弃神经元。

为什么测试时要用 model.eval() ?

训练完 train 样本后,生成的模型 model 要用来测试样本了。在 model(test) 之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是 model 中含有 BN 层和 Dropout 所带来的的性质。

eval() 时,pytorch 会自动把 BN 和 DropOut 固定住,不会取平均,而是用训练好的值。
不然的话,一旦 test 的 batch_size 过小,很容易就会被 BN 层导致生成图片颜色失真极大。
eval() 在非训练的时候是需要加的,没有这句代码,一些网络层的值会发生变动,不会固定,你神经网络每一次生成的结果也是不固定的,生成质量可能好也可能不好。

也就是说,测试过程中使用model.eval(),这时神经网络会 沿用 batch normalization 的值,而并 不使用 dropout。

3. 总结与对比

如果模型中有 BN 层(Batch Normalization)和 Dropout,需要在训练时添加 model.train(),在测试时添加 model.eval()。

其中 model.train() 是保证 BN 层用每一批数据的均值和方差,而 model.eval() 是保证 BN 用全部训练数据的均值和方差;

而对于 Dropout,model.train() 是随机取一部分网络连接来训练更新参数,而 model.eval() 是利用到了所有网络连接。

三、Dropout 简介

dropout 常常用于抑制过拟合。

设置Dropout时,torch.nn.Dropout(0.5),这里的 0.5 是指该层(layer)的神经元在每次迭代训练时会随机有 50% 的可能性被丢弃(失活),不参与训练。也就是将上一层数据减少一半传播。

到此这篇关于详解model.train()和model.eval()两种模式的原理与用法的文章就介绍到这了,更多相关model.train()和model.eval()原理用法内容请搜索w3xue以前的文章或继续浏览下面的相关文章希望大家以后多多支持w3xue!

 友情链接:直通硅谷  点职佳  北美留学生论坛

本站QQ群:前端 618073944 | Java 606181507 | Python 626812652 | C/C++ 612253063 | 微信 634508462 | 苹果 692586424 | C#/.net 182808419 | PHP 305140648 | 运维 608723728

W3xue 的所有内容仅供测试,对任何法律问题及风险不承担任何责任。通过使用本站内容随之而来的风险与本站无关。
关于我们  |  意见建议  |  捐助我们  |  报错有奖  |  广告合作、友情链接(目前9元/月)请联系QQ:27243702 沸活量
皖ICP备17017327号-2 皖公网安备34020702000426号