经验首页 前端设计 程序设计 Java相关 移动开发 数据库/运维 软件/图像 大数据/云计算 其他经验
当前位置:技术经验 » 大数据/云/AI » 人工智能基础 » 查看文章
Causal Inference理论学习篇-Tree Based-Causal Forest - real-zhouyc
来源:cnblogs  作者:real-zhouyc  时间:2024/4/19 8:55:17  对本文有异议

广义随机森林

了解causal forest之前,需要先了解其forest实现的载体:GENERALIZED RANDOM FORESTS[6](GRF)
其是随机森林的一种推广, 经典的随机森林只能去估计label Y,不能用于估计复杂的目标,比如causal effect,Causal Tree、Cauasl Forest的同一个作者对其进行了改良。先定义一下矩估计参数表达式:

\[\begin{equation} \tag{1} \mathbb E[\psi_{\theta(x), \upsilon(x)}(O_i)|X=x]=0 \end{equation} \]

其中,\(\psi\) 是score function,也就是measure metric,\(\theta\) 是我们不得不去计算的参数,比如tree里面的各项参数如特征threshold,叶子节点估计值..etc, \(\upsilon\)

则是一个可选参数。\(O\) 表示和计算相关的值,比如监督信号。像response类的模型,\(O_i={Y_i}\), 像causal 模型,\(O_i={Y_i, W_i}\) \(W\) 表示某种treatment。
该式在实际优化参数的时候,等价于最小化:

\[\tag{2} \left(\hat \theta(x), \upsilon(x)\right)\in argmin_{\theta, \upsilon}\left|\left|\sum\alpha_i(x)\psi_{\theta, \upsilon(O_i)}\right|\right|_2 \]

其中,\(\alpha\) 是一种权重,当然,这里也可以理解为树的权重,假设总共需要学习\(B\) 棵树:

\[\alpha_i(x)=\frac{1}{B}\sum_{b=1}^{B}\alpha_{bi}(x) \]

\[\alpha_{bi(x)}=\frac{1(\{x\in L_b(x)\})}{|L_b(x)|} \]

其中,\(L_b(x)\) 表示叶子节点里的样本。本质上,这个权重表示的是:训练样本和推理或者测试样本的相似度,因为如果某个样本\(x_i\)落入叶子\(L_b\) ,且我们可以认为叶子节点内的样本同质的情况下,那么可以认为这个样本和当前落入的tree有相似性。

当然,按照这个公式,如果\(L_b\) 很大,说明进入这个叶子的训练样本很多,意味着没划分完全,异质性低,则最后分配给这棵树的权重就低,反之亦然。

分裂准则框架

对于每棵树,父节点\(P\) 通过最优化下式进行分裂:

\[\tag{3}\left(\hat{\theta}_P, \hat{\nu}_P\right)(\mathcal{J}) \in \operatorname{argmin}_{\theta, \nu}\left\{\left\|\sum_{\left\{i \in \mathcal{J}: X_i \in P\right\}} \psi_{\theta, \nu}\left(O_i\right)\right\|_2\right\} . \]

其中,\(\mathcal{J}\) 表示train set,分裂后形成的2个子节点标准为:通过最小化估计值与真实值间的误差平方:

\[\tag{4}\operatorname{err}\left(C_1, C_2\right)=\sum_{j=1,2} \mathbb{P}\left[X \in C_j \mid X \in P\right] \mathbb{E}\left[\left(\hat{\theta}_{C_j}(\mathcal{J})-\theta(X)\right)^2 \mid X \in C_j\right] \]

等价于最大化节点间的异质性:

\[\tag{5}\Delta\left(C_1, C_2\right):=n_{C_1} n_{C_2} / n_P^2\left(\hat{\theta}_{C_1}(\mathcal{J})-\hat{\theta}_{C_2}(\mathcal{J})\right)^2 \]

但是\(\theta\) 参数比较难优化,交给梯度下降:

\[\tag{6}\tilde{\theta}_C=\hat{\theta}_P-\frac{1}{\left|\left\{i: X_i \in C\right\}\right|} \sum_{\left\{i: X_i \in C\right\}} \xi^{\top} A_P^{-1} \psi_{\hat{\theta}_P, \hat{\nu}_P}\left(O_i\right) \]

其中,\(\hat \theta_P\) 通过 (2) 式获得, \(A_p\) 为score function的梯度

\[\tag{7}A_P=\frac{1}{\left|\left\{i: X_i \in P\right\}\right|} \sum_{\left\{i: X_i \in P\right\}} \nabla \psi_{\hat{\theta}_P, \hat{\nu}_P}\left(O_i\right), \]

梯度计算部分包含2个step:

  • step1:labeling-step 得到一个pseudo-outcomes

\[\tag{8}\rho_i=-\xi^{\top} A_P^{-1} \psi_{\hat{\theta}_P, \hat{\nu}_P}\left(O_i\right) \in \mathbb{R}$. \]

  • step2:回归阶段,用这个pseudo-outcomes 作为信号,传递给split函数, 最终是最大化下式指导节点分割

\[{\Delta}\left(C_1, C_2\right)=\sum_{j=1}^2 \frac{1}{\left|\left\{i: X_i \in C_j\right\}\right|}\left(\sum_{\left\{i: X_i \in C_j\right\}} \rho_i\right)^2 \]

以下是GRF的几种Applications:

Causal Forest

以Casual-Tree为base,不做任何估计量的改变

与单棵 tree 净化到 ensemble 一样,causal forest[7] 沿用了经典bagging系的随机森林,将一颗causal tree 拓展到多棵:

\[\hat \tau=\frac{1}{B}\sum_{b=1}^{B} \hat \tau_b(x) \]

其中,每科子树\(\hat \tau\) 为一颗Casual Tree。使用随机森林作为拓展的好处之一是不需要对causal tree做任何的变换,这一点比boosing系的GBM显然成本也更低。

不过这个随机森林使用的是广义随机森林 , 经典的随机森林只能去估计label Y,不能用于估计复杂的目标,比如causal effect,Causal Tree、Cauasl Forest的同一个作者对其进行了改良,放在后面再讲。

在实现上,不考虑GRF,单机可以直接套用sklearn的forest子类,重写fit方法即可。分布式可以直接套用spark ml的forest。

  1. self._estimator = CausalTreeRegressor(
  2. control_name=control_name,
  3. criterion=criterion,
  4. groups_cnt=groups_cnt)
  5. trees = [self._make_estimator(append=False, random_state=random_state)
  6. for i in range(n_more_estimators)]
  7. trees = Parallel(
  8. n_jobs=self.n_jobs,
  9. verbose=self.verbose,
  10. **_joblib_parallel_args,
  11. )(
  12. delayed(_parallel_build_trees)(
  13. t,
  14. self,
  15. X,
  16. y,
  17. sample_weight,
  18. i,
  19. len(trees),
  20. verbose=self.verbose,
  21. class_weight=self.class_weight,
  22. n_samples_bootstrap=n_samples_bootstrap,
  23. )
  24. for i, t in enumerate(trees)
  25. )
  26. self.estimators_.extend(trees)

CAPE:  适用连续treatment 的 causal effect预估

Conditional Average Partial Effects(CAPE)

GRF给定了一种框架:输入任意的score-function,能够指导最大化异质节点的方向持续分裂子树,和response类的模型一样,同样我们需要一些估计值(比如gini index、entropy)来计算分裂前后的score-function变化,计算估计值需要估计量,定义连续treatment的估计量为:

\[\theta(x)=\xi^{\top} \operatorname{Var}\left[W_i \mid X_i=x\right]^{-1} \operatorname{Cov}\left[W_i, Y_i \mid X_i=x\right] \]

估计量参与指导分裂计算,但最终,叶子节点存储的依然是outcome的期望。

此处的motivation来源于工具变量和线性回归:

\[y=f(x)=wx+b \]

此处我们假设\(x\)是treatment,y是outcome, \(w\) 作为一个参数简单的描述了施加treatment对结果的直接影响,要寻找到参数我们需要一个指标衡量参数好坏, 也就是loss, 和casual tree一样,通常使用mse:

\[L(w, b) = \frac{1}{2}\sum(f(x)-y)^2 \]

为了最快的找到这个w,当然是往函数梯度的方向, 我们对loss求偏导并令其为0:

\[\tag{1}\frac{\partial L}{\partial w}=\sum(f(x)-y)x=\sum(wx+b-y)x \]

\[ \tag{2} \begin{aligned} \frac{\partial L}{\partial b} & = \sum(f(x)-y)=\sum(wx+b-y) \ & \Rightarrow \sum b= \sum y-\sum wx \ & \Rightarrow b = E(y)-wE(x) = \bar y - w\bar x \end{aligned} \]

(2) 代入 (1) 式可得:

\[ \begin{aligned} \frac{\partial L}{\partial w} & \Rightarrow \sum(wx+\bar y-w\bar x-y)x =0 \ &\Rightarrow w=\frac{\sum xy-\bar y\sum x}{\sum x^2-\bar x\sum x} \ &\Rightarrow w=\frac{\sum(x-\bar x)(y-\bar y)}{\sum(x-\bar x)^2}\ &\Rightarrow w=\frac{Cov(x,y)}{Var(x)} \end{aligned} \]

可简化得参数w是关于treatment和outcome的协方差/方差。至于\(\xi\) , 似乎影响不大。

refs

  1. https://hwcoder.top/Uplift-1
  2. 工具: scikit-uplift
  3. Meta-learners for Estimating Heterogeneous Treatment Effects using Machine Learning
  4. Athey, Susan, and Guido Imbens. "Recursive partitioning for heterogeneous causal effects." Proceedings of the National Academy of Sciences 113.27 (2016): 7353-7360.
  5. https://zhuanlan.zhihu.com/p/115223013
  6. Athey, Susan, Julie Tibshirani, and Stefan Wager. "Generalized random forests." (2019): 1148-1178.
  7. Wager, Stefan, and Susan Athey. "Estimation and inference of heterogeneous treatment effects using random forests." Journal of the American Statistical Association 113.523 (2018): 1228-1242.
  8. Rzepakowski, P., & Jaroszewicz, S. (2012). Decision trees for uplift modeling with single and multiple treatments. Knowledge and Information Systems32, 303-327.
  9. annik R??ler, Richard Guse, and Detlef Schoder. The best of two worlds: using recent advances from uplift modeling and heterogeneous treatment effects to optimize targeting policies. International Conference on Information Systems, 2022.

原文链接:https://www.cnblogs.com/zhouyc/p/18144726

 友情链接:直通硅谷  点职佳  北美留学生论坛

本站QQ群:前端 618073944 | Java 606181507 | Python 626812652 | C/C++ 612253063 | 微信 634508462 | 苹果 692586424 | C#/.net 182808419 | PHP 305140648 | 运维 608723728

W3xue 的所有内容仅供测试,对任何法律问题及风险不承担任何责任。通过使用本站内容随之而来的风险与本站无关。
关于我们  |  意见建议  |  捐助我们  |  报错有奖  |  广告合作、友情链接(目前9元/月)请联系QQ:27243702 沸活量
皖ICP备17017327号-2 皖公网安备34020702000426号