洛谷模拟NOIP考试反思
想法
考了这么简单的试qwq然而依然emmmmmm成绩不好
虽然本次难度应该是大于正常PJ难度的但还是很不理想,离预估分数差很多qwq
于是就有了本反思嘤嘤嘤
比赛链接
题目解析反思
第一题
超简单(虽然仍然没做对)

第二题


代码扔上来qwq(虽然还是不会)

第三题


代码

第四题

毒瘤极了wodema
据说原来数据是50%那里的,但是出题人z某灵机一动加到了1000orz
于是很多人自然而然地想到了状压DP
普及组是到不了这个难度的,主要是z某他太坏了
50分做法(状压)

正解的100分正法并非毒瘤状压qwq


(有人说爆搜能骗40分?!)
讲评者

XD
---
TG
还是放一道TG第三题压压惊好了
- #include <cstdio>
- #include <cstring>
- #include <algorithm>
-
- using namespace std;
- typedef long long int LL;
- const int Max_N(100050);
- const int Max_M(100050);
- const int Max_Q(100050);
-
- template<typename Type>
- void gi(Type &Ret)
- {
- Ret = 0;
- char ch;
- while (ch = getchar(), ch > '9' || ch < '0')
- ;
- do
- {
- (Ret *= 10) += ch - '0';
- }
- while (ch = getchar(), ch >= '0' && ch <= '9');
- }
-
- inline int Abs(const int &x)
- {
- return x >= 0 ? x : -x;
- }
-
- int N, M, Q, X1[Max_N + Max_Q], Y1[Max_N + Max_Q], X2[Max_N + Max_Q], Y2[Max_N + Max_Q];
- int L[Max_N + Max_Q], R[Max_N + Max_Q], D[Max_N + Max_Q], U[Max_N + Max_Q], Anc[60][Max_N];
- LL T[Max_N + Max_Q], Sum[60][Max_N];
-
- #define LEFT (segt[cur].l)
- #define RIGHT (segt[cur].r)
- #define MID (segt[cur].mid)
- #define COV (segt[cur].Cov)
- #define TAG (segt[cur].Tag)
- #define LCH (cur << 1)
- #define RCH ((cur << 1) | 1)
-
- struct node
- {
- int l, r, mid, Cov, Tag;
- };
- node segt[Max_M << 2];
- int C[Max_M];
-
- void build_tree(const int &cur, const int &l, const int &r)
- {
- LEFT = l, RIGHT = r, MID = l + ((r - l) >> 1), COV = TAG = 0;
- if (l == r)
- return;
- build_tree(LCH, l, MID), build_tree(RCH, MID + 1, r);
- }
-
- inline void cover(const int &cur, const int &v)
- {
- COV = TAG = v;
- }
-
- inline void pushdown(const int &cur)
- {
- if (TAG)
- cover(LCH, TAG), cover(RCH, TAG), TAG = 0;
- }
-
- void cover(const int &cur, const int &l, const int &r, const int &v)
- {
- if (LEFT == l && RIGHT == r)
- {
- cover(cur, v);
- return;
- }
- pushdown(cur);
- if (r <= MID)
- cover(LCH, l, r, v);
- else
- if (l > MID)
- cover(RCH, l, r, v);
- else
- cover(LCH, l, MID, v), cover(RCH, MID + 1, r, v);
- }
-
- int query(const int &cur, const int &pos)
- {
- if (LEFT == RIGHT)
- return COV;
- pushdown(cur);
- if (pos <= MID)
- return query(LCH, pos);
- else
- return query(RCH, pos);
- }
-
- inline bool compL(const int &a, const int &b)
- {
- return min(X1[a], X2[a]) < min(X1[b], X2[b]);
- }
-
- void goL()
- {
- build_tree(1, 0, M), memset(C, 0, sizeof(C));
- sort(L + 1, L + 1 + L[0], compL);
- sort(R + 1, R + 1 + R[0], compL);
- sort(D + 1, D + 1 + D[0], compL);
- sort(U + 1, U + 1 + U[0], compL);
- for (int l = 1, r = 1, d = 1, u = 1, a, b, p;l <= L[0];++l)
- {
- p = L[l];
- while (r <= R[0] && X1[R[r]] <= X2[p])
- {
- if (R[r] <= N)
- C[Y2[R[r]]] = R[r];
- ++r;
- }
- while ((d <= D[0] && X2[D[d]] <= X2[p]) || (u <= U[0] && X2[U[u]] <= X2[p]))
- if ((d <= D[0]) && (u > U[0] || X2[D[d]] <= X2[U[u]]))
- {
- if (D[d] <= N)
- cover(1, Y2[D[d]], Y1[D[d]], D[d]);
- ++d;
- }
- else
- {
- if (U[u] <= N)
- cover(1, Y1[U[u]], Y2[U[u]], U[u]);
- ++u;
- }
- a = query(1, Y2[p]), b = C[Y2[p]];
- if (p <= N)
- {
- if (a == 0 && b == 0)
- Anc[0][p] = -1;
- else
- if (a && (b == 0 || X2[p] - X2[a] < X2[p] - X2[b]))
- Anc[0][p] = a, Sum[0][p] = (X2[p] - X2[a]) + Abs(Y2[p] - Y2[a]);
- else
- Anc[0][p] = b, Sum[0][p] = X2[p] - X2[b];
- }
- else
- {
- if (a == 0 && b == 0)
- X2[p] = max(0LL, X2[p] - T[p]), T[p] = 0LL;
- else
- if (a && (b == 0 || X2[p] - X2[a] < X2[p] - X2[b]))
- if (T[p] <= X2[p] - X2[a])
- X2[p] -= T[p], T[p] = 0LL;
- else
- {
- T[p] -= X2[p] - X2[a], X2[p] = X2[a];
- if (T[p] <= Abs(Y2[p] - Y2[a]))
- {
- if (Y2[a] <= Y2[p])
- Y2[p] -= T[p];
- else
- Y2[p] += T[p];
- T[p] = 0LL;
- }
- else
- T[p] -= Abs(Y2[p] - Y2[a]), X2[p] = a;
- }
- else
- if (T[p] <= Abs(X2[p] - X2[b]))
- {
- if (X2[b] <= X2[p])
- X2[p] -= T[p];
- else
- X2[p] += T[p];
- T[p] = 0LL;
- }
- else
- T[p] -= Abs(X2[p] - X2[b]), X2[p] = b;
- }
- }
- }
-
- inline int getR(const int &x)
- {
- return max(X1[x], X2[x]);
- }
-
- inline bool compR(const int &a, const int &b)
- {
- return getR(a) > getR(b);
- }
-
- void goR()
- {
- build_tree(1, 0, M), memset(C, 0, sizeof(C));
- sort(L + 1, L + 1 + L[0], compR);
- sort(R + 1, R + 1 + R[0], compR);
- sort(D + 1, D + 1 + D[0], compR);
- sort(U + 1, U + 1 + U[0], compR);
- for (int l = 1, r = 1, d = 1, u = 1, a, b, p;r <= R[0];++r)
- {
- p = R[r];
- while (l <= L[0] && getR(L[l]) >= getR(p))
- {
- if (L[l] <= N)
- C[Y2[L[l]]] = L[l];
- ++l;
- }
- while ((d <= D[0] && getR(D[d]) >= getR(p)) || (u <= U[0] && getR(U[u]) >= getR(p)))
- if ((d <= D[0]) && (u > U[0] || getR(D[d]) >= getR(U[u])))
- {
- if (D[d] <= N)
- cover(1, Y2[D[d]], Y1[D[d]], D[d]);
- ++d;
- }
- else
- {
- if (U[u] <= N)
- cover(1, Y1[U[u]], Y2[U[u]], U[u]);
- ++u;
- }
- a = query(1, Y2[p]), b = C[Y2[p]];
- if (p <= N)
- {
- if (a == 0 && b == 0)
- Anc[0][p] = -1;
- else
- if (a && (b == 0 || X2[a] - X2[p] < X2[b] - X2[p]))
- Anc[0][p] = a, Sum[0][p] = (X2[a] - X2[p]) + Abs(Y2[p] - Y2[a]);
- else
- Anc[0][p] = b, Sum[0][p] = X2[b] - X2[p];
- }
- else
- {
- if (a == 0 && b == 0)
- X2[p] = min(M * 1LL, X2[p] + T[p]), T[p] = 0LL;
- else
- if (a && (b == 0 || X2[a] - X2[p] < X2[b] - X2[p]))
- if (T[p] <= X2[a] - X2[p])
- X2[p] += T[p], T[p] = 0LL;
- else
- {
- T[p] -= X2[a] - X2[p], X2[p] = X2[a];
- if (T[p] <= Abs(Y2[p] - Y2[a]))
- {
- if (Y2[a] <= Y2[p])
- Y2[p] -= T[p];
- else
- Y2[p] += T[p];
- T[p] = 0LL;
- }
- else
- T[p] -= Abs(Y2[p] - Y2[a]), X2[p] = a;
- }
- else
- if (T[p] <= Abs(X2[b] - X2[p]))
- {
- if (X2[b] <= X2[p])
- X2[p] -= T[p];
- else
- X2[p] += T[p];
- T[p] = 0LL;
- }
- else
- T[p] -= Abs(X2[b] - X2[p]), X2[p] = b;
- }
- }
- }
-
- inline int getD(const int &x)
- {
- return min(Y1[x], Y2[x]);
- }
-
- inline bool compD(const int &a, const int &b)
- {
- return getD(a) < getD(b);
- }
-
- void goD()
- {
- build_tree(1, 0, M), memset(C, 0, sizeof(C));
- sort(L + 1, L + 1 + L[0], compD);
- sort(R + 1, R + 1 + R[0], compD);
- sort(D + 1, D + 1 + D[0], compD);
- sort(U + 1, U + 1 + U[0], compD);
- for (int l = 1, r = 1, d = 1, u = 1, a, b, p;d <= D[0];++d)
- {
- p = D[d];
- while (u <= U[0] && getD(U[u]) <= getD(p))
- {
- if (U[u] <= N)
- C[X2[U[u]]] = U[u];
- ++u;
- }
- while ((l <= L[0] && getD(L[l]) <= getD(p)) || (r <= R[0] && getD(R[r]) <= getD(p)))
- if ((l <= L[0]) && (r > R[0] || getD(L[l]) <= getD(R[r])))
- {
- if (L[l] <= N)
- cover(1, X2[L[l]], X1[L[l]], L[l]);
- ++l;
- }
- else
- {
- if (R[r] <= N)
- cover(1, X1[R[r]], X2[R[r]], R[r]);
- ++r;
- }
- a = query(1, X2[p]), b = C[X2[p]];
- if (p <= N)
- {
- if (a == 0 && b == 0)
- Anc[0][p] = -1;
- else
- if (a && (b == 0 || Y2[p] - Y2[a] < Y2[p] - Y2[b]))
- Anc[0][p] = a, Sum[0][p] = (Y2[p] - Y2[a]) + Abs(X2[p] - X2[a]);
- else
- Anc[0][p] = b, Sum[0][p] = Y2[p] - Y2[b];
- }
- else
- {
- if (a == 0 && b == 0)
- Y2[p] = max(0LL, Y2[p] - T[p]), T[p] = 0LL;
- else
- if (a && (b == 0 || Y2[p] - Y2[a] < Y2[p] - Y2[b]))
- if (T[p] <= Y2[p] - Y2[a])
- Y2[p] -= T[p], T[p] = 0LL;
- else
- {
- T[p] -= Y2[p] - Y2[a], Y2[p] = Y2[a];
- if (T[p] <= Abs(X2[p] - X2[a]))
- {
- if (X2[a] <= X2[p])
- X2[p] -= T[p];
- else
- X2[p] += T[p];
- T[p] = 0LL;
- }
- else
- T[p] -= Abs(X2[p] - X2[a]), X2[p] = a;
- }
- else
- if (T[p] <= Abs(Y2[p] - Y2[b]))
- {
- if (Y2[b] <= Y2[p])
- Y2[p] -= T[p];
- else
- Y2[p] += T[p];
- T[p] = 0LL;
- }
- else
- T[p] -= Abs(Y2[p] - Y2[b]), X2[p] = b;
- }
- }
- }
-
- inline int getU(const int &x)
- {
- return max(Y1[x], Y2[x]);
- }
-
- inline bool compU(const int &a, const int &b)
- {
- return getU(a) > getU(b);
- }
-
- void goU()
- {
- build_tree(1, 0, M), memset(C, 0, sizeof(C));
- sort(L + 1, L + 1 + L[0], compU);
- sort(R + 1, R + 1 + R[0], compU);
- sort(D + 1, D + 1 + D[0], compU);
- sort(U + 1, U + 1 + U[0], compU);
- for (int l = 1, r = 1, d = 1, u = 1, a, b, p;u <= U[0];++u)
- {
- p = U[u];
- while (d <= D[0] && getU(D[d]) >= getU(p))
- {
- if (D[d] <= N)
- C[X2[D[d]]] = D[d];
- ++d;
- }
- while ((l <= L[0] && getU(L[l]) >= getU(p)) || (r <= R[0] && getU(R[r]) >= getU(p)))
- if ((l <= L[0]) && (r > R[0] || getU(L[l]) >= getU(R[r])))
- {
- if (L[l] <= N)
- cover(1, X2[L[l]], X1[L[l]], L[l]);
- ++l;
- }
- else
- {
- if (R[r] <= N)
- cover(1, X1[R[r]], X2[R[r]], R[r]);
- ++r;
- }
- a = query(1, X2[p]), b = C[X2[p]];
- if (p <= N)
- {
- if (a == 0 && b == 0)
- Anc[0][p] = -1;
- else
- if (a && (b == 0 || Y2[a] - Y2[p] < Y2[b] - Y2[p]))
- Anc[0][p] = a, Sum[0][p] = (Y2[a] - Y2[p]) + Abs(X2[p] - X2[a]);
- else
- Anc[0][p] = b, Sum[0][p] = Y2[b] - Y2[p];
- }
- else
- {
- if (a == 0 && b == 0)
- Y2[p] = min(M * 1LL, Y2[p] + T[p]), T[p] = 0LL;
- else
- if (a && (b == 0 || Y2[a] - Y2[p] < Y2[b] - Y2[p]))
- if (T[p] <= Y2[a] - Y2[p])
- Y2[p] += T[p], T[p] = 0LL;
- else
- {
- T[p] -= Y2[a] - Y2[p], Y2[p] = Y2[a];
- if (T[p] <= Abs(X2[p] - X2[a]))
- {
- if (X2[a] <= X2[p])
- X2[p] -= T[p];
- else
- X2[p] += T[p];
- T[p] = 0LL;
- }
- else
- T[p] -= Abs(X2[p] - X2[a]), X2[p] = a;
- }
- else
- if (T[p] <= Abs(Y2[b] - Y2[p]))
- {
- if (Y2[b] <= Y2[p])
- Y2[p] -= T[p];
- else
- Y2[p] += T[p];
- T[p] = 0LL;
- }
- else
- T[p] -= Abs(Y2[b] - Y2[p]), X2[p] = b;
- }
- }
- }
-
- void get(const int &i, const int &u)
- {
- if (X2[u] < X1[u])
- X2[i] = max(0LL, X2[i] - T[i]);
- if (X2[u] > X1[u])
- X2[i] = min(M * 1LL, X2[i] + T[i]);
- if (Y2[u] < Y1[u])
- Y2[i] = max(0LL, Y2[i] - T[i]);
- if (Y2[u] > Y1[u])
- Y2[i] = min(M * 1LL, Y2[i] + T[i]);
- }
-
- int main()
- {
-
- gi(N), gi(M);
- for (int i = 1;i <= N;++i)
- {
- gi(X1[i]), gi(Y1[i]), gi(X2[i]), gi(Y2[i]);
- if (X2[i] < X1[i])
- L[++L[0]] = i;
- if (X2[i] > X1[i])
- R[++R[0]] = i;
- if (Y2[i] < Y1[i])
- D[++D[0]] = i;
- if (Y2[i] > Y1[i])
- U[++U[0]] = i;
- }
- gi(Q);
- for (int i = 1;i <= Q;++i)
- {
- gi(X2[N + i]), gi(Y2[N + i]), X1[N + i] = X2[N + i], Y1[N + i] = Y2[N + i];
- char op[5];
- scanf("%s", op);
- if (*op == 'L')
- L[++L[0]] = N + i;
- if (*op == 'R')
- R[++R[0]] = N + i;
- if (*op == 'D')
- D[++D[0]] = N + i;
- if (*op == 'U')
- U[++U[0]] = N + i;
- gi(T[N + i]);
- }
- goL(), goR(), goD(), goU();
- for (int j = 1;j <= 59;++j)
- for (int i = 1;i <= N;++i)
- if (Anc[j - 1][i] == -1)
- Anc[j][i] = -1;
- else
- {
- Anc[j][i] = Anc[j - 1][Anc[j - 1][i]];
- Sum[j][i] = Sum[j - 1][i] + Sum[j - 1][Anc[j - 1][i]];
- Sum[j][i] = min(Sum[j][i], 1000000000000000LL + 1LL);
- }
- for (int i = N + 1, u;i <= N + Q;++i)
- {
- if (T[i])
- {
- u = X2[i];
- for (int j = 59;j >= 0;--j)
- if (Anc[j][u] != -1 && Sum[j][u] <= T[i])
- T[i] -= Sum[j][u], u = Anc[j][u];
- X2[i] = X2[u], Y2[i] = Y2[u];
- if (Anc[0][u] == -1)
- get(i, u);
- else
- {
- if (X2[u] < X1[u])
- if (T[i] <= X2[i] - X2[Anc[0][u]])
- get(i, u);
- else
- T[i] -= X2[i] - X2[Anc[0][u]], X2[i] = X2[Anc[0][u]], get(i, Anc[0][u]);
- if (X2[u] > X1[u])
- if (T[i] <= X2[Anc[0][u]] - X2[i])
- get(i, u);
- else
- T[i] -= X2[Anc[0][u]] - X2[i], X2[i] = X2[Anc[0][u]], get(i, Anc[0][u]);
- if (Y2[u] < Y1[u])
- if (T[i] <= Y2[i] - Y2[Anc[0][u]])
- get(i, u);
- else
- T[i] -= Y2[i] - Y2[Anc[0][u]], Y2[i] = Y2[Anc[0][u]], get(i, Anc[0][u]);
- if (Y2[u] > Y1[u])
- if (T[i] <= Y2[Anc[0][u]] - Y2[i])
- get(i, u);
- else
- T[i] -= Y2[Anc[0][u]] - Y2[i], Y2[i] = Y2[Anc[0][u]], get(i, Anc[0][u]);
- }
- }
- printf("%d %d\n", X2[i], Y2[i]);
- }
- return 0;
