-
1001 害死人不偿命的(3n+1)猜想 (15 分)
对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……
我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n,简单地数一下,需要多少步(砍几下)才能得到 n=1?
输入格式:
每个测试输入包含 1 个测试用例,即给出正整数 n 的值。
输出格式:
输出从 n 计算到 1 需要的步数。
输入样例:
3
输出样例:
5
- 1 #include <stdio.h>
- 2 #include <stdlib.h>
- 3 int main(void)
- 4 {
- 5 int n,counter=0;
- 6 scanf("%d",&n);
- 7 while (n!=1)
- 8 {
- 9 if (n%2==0) n=n/2; //偶数处理
- 10 else n=(3*n+1)/2; //奇数处理
- 11 counter++; //执行次数
- 12 }
- 13 printf("%d\n",counter);
- 14 system("pause");
- 15 return 0;
- 16 }
2018-12-06