经验首页 前端设计 程序设计 Java相关 移动开发 数据库/运维 软件/图像 大数据/云计算 其他经验
当前位置:技术经验 » 程序设计 » MATLAB » 查看文章
MATLAB最大均值差异(Maximum Mean Discrepancy)
来源:cnblogs  作者:凯鲁嘎吉  时间:2019/6/12 12:08:03  对本文有异议

MATLAB最大均值差异(Maximum Mean Discrepancy)

作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/

更多内容,请看标签:MATLAB聚类

注:X与Y数据维度必须一致!

1. MMD介绍

2. MATLAB程序

数据

注:数据集仅供参考,并不能真正用于研究中。

源域:
2.1789	1.7811	5.079	4.9312
0.8621	2.1287	4.9825	2.3388
2.6347	1.9563	4.5392	4.8442
2.7179	2.9001	4.9027	4.8582
2.6686	1.6799	4.3792	4.6411
1.6736	2.3081	4.8384	3.2979
1.5666	2.6467	5.0504	4.459
-0.5611	2.2365	4.3925	5.1316
5.6693	1.7355	4.5335	4.6407
3.2032	2.103	4.1948	5.2605
3.3525	2.8301	4.6383	5.6972
-1.0407	3.5198	4.7106	4.9243
3.9229	2.1161	4.5666	1.772
2.5607	3.802	4.2681	4.6322
3.3072	2.5083	4.6095	2.2236
2.7121	2.4338	4.136	2.2348
5.3547	2.1088	4.402	4.9884
1.8302	1.4921	4.6216	3.5862
2.8891	2.1286	4.6419	3.8606
-0.0896	2.6894	3.6843	6.6392
3.1404	1.9461	4.2604	5.9859
2.3406	3.1988	5.0872	4.7518
2.5067	2.9704	4.2749	4.3441
8.2153	1.7592	5.2409	3.8201
0.3027	2.7589	3.9826	4.8484
4.0223	1.7566	4.6219	4.92
6.1367	2.1098	4.7832	5.4567
4.9795	2.418	4.7726	3.1959
-1.0746	2.4311	4.7683	4.5599
5.4939	2.6046	4.4663	5.1159
4.5709	1.9838	4.9596	4.9317
1.3746	2.6845	5.1921	3.2068
1.7178	0.7976	4.6948	3.7012
目标域:
1.9584	2.0242	4.7594	2.587
-2.8342	3.4594	4.4371	5.2375
1.6251	2.7737	5.0145	6.3262
0.7016	2.5265	4.8881	3.2105
3.5579	2.5773	4.856	4.283
4.3282	2.7581	4.7095	6.715
3.1619	2.5427	4.1323	5.5883
4.9933	2.2985	3.8455	3.8381
3.2214	2.6478	4.3276	2.5246
-0.2848	2.5853	4.6481	3.4857
2.876	1.5096	3.9921	2.4505
0.8559	2.5633	5.483	3.0589
4.2149	2.6618	4.2017	3.3713

MMD

function mmd_XY=my_mmd(X, Y, sigma)
%Author:kailugaji
%Maximum Mean Discrepancy 最大均值差异 越小说明X与Y越相似
%X与Y数据维度必须一致, X, Y为无标签数据,源域数据,目标域数据
%mmd_XY=my_mmd(X, Y, 4)
%sigma is kernel size, 高斯核的sigma
[N_X, ~]=size(X);
[N_Y, ~]=size(Y);
K = rbf_dot(X,X,sigma); %N_X*N_X
L = rbf_dot(Y,Y,sigma);  %N_Y*N_Y
KL = rbf_dot(X,Y,sigma);  %N_X*N_Y
c_K=1/(N_X^2);
c_L=1/(N_Y^2);
c_KL=2/(N_X*N_Y);
mmd_XY=sum(sum(c_K.*K))+sum(sum(c_L.*L))-sum(sum(c_KL.*KL));
mmd_XY=sqrt(mmd_XY);

Guassian Kernel

function H=rbf_dot(X,Y,deg)
%Author:kailugaji
%高斯核函数/径向基函数 K(x, y)=exp(-d^2/sigma), d=(x-y)^2, 假设X与Y维度一样
%Deg is kernel size,高斯核的sigma
[N_X,~]=size(X);
[N_Y,~]=size(Y);
G = sum((X.*X),2);
H = sum((Y.*Y),2);
Q = repmat(G,1,N_Y(1));
R = repmat(H',N_X(1),1);
H = Q + R - 2*X*Y';
H=exp(-H/2/deg^2);  %N_X*N_Y

结果

>> mmd_XY=my_mmd(x, y, 4)

mmd_XY =

    0.1230 

原文链接:http://www.cnblogs.com/kailugaji/p/11004246.html

 友情链接:直通硅谷  点职佳  北美留学生论坛