队列基本概念
队列是最常见的概念,日常生活经常需要排队,仔细观察队列会发现,队列是一种逻辑结构,是一种特殊的线性表。特殊在:
只能在固定的两端操作线性表
只要满足上述条件,那么这种特殊的线性表就会呈现出一种“先进先出”的逻辑,这种逻辑就被称为队列。
由于约定了只能在线性表固定的两端进行操作,于是给队列这种特殊的线性表的插入删除,起个特殊的名称:
队头:可以删除节点的一端
队尾:可以插入节点的一端
入队:将节点插入到队尾之后,函数名通常为enQueue()
出队:将队头节点从队列中剔除,函数名通常为outQueue()
取队头:取得队头元素,但不出队,函数名通常为front()


本题就是手撸数据结构中基本的队列结构,常用的有两种,一种是用链表实现,一种是数组实现。本文将会给出两种实现方式
1,数组实现
- typedef struct {
- int value[1000];
- int len;
- } FrontMiddleBackQueue;
-
-
- FrontMiddleBackQueue* frontMiddleBackQueueCreate() {
- FrontMiddleBackQueue *queue = (FrontMiddleBackQueue *)malloc(sizeof(FrontMiddleBackQueue));
- memset(queue,0,sizeof(FrontMiddleBackQueue));
- return queue;
- }
-
- void insert(FrontMiddleBackQueue* obj, int pos, int val)
- {
- //在pos位置插入val,则pos(从0开始)位置后的数统一向后挪一个位置,队列长度加1
- int i = 0;
- for(i=obj->len; i>pos; i--)
- {
- obj->value[i] = obj->value[i-1];
- }
- obj->value[pos] = val;
- obj->len++;
- }
-
- int pop(FrontMiddleBackQueue* obj, int pos)
- {
- //弹出pos位置的val,则pos(从0开始)位置后向前统一挪一个位置,队列长度减一
- if(obj->len == 0)
- return -1;
- int i = 0;
- int popval = obj->value[pos]; //先将pos位置的数保存下来,不然下面的移位操作就覆盖了pos位置的值
- for(i=pos; i<obj->len-1; i++)
- {
- obj->value[i] = obj->value[i+1];
- }
- obj->len--;
- return popval;
- }
-
- void frontMiddleBackQueuePushFront(FrontMiddleBackQueue* obj, int val) {
- insert(obj,0,val);
- }
-
- void frontMiddleBackQueuePushMiddle(FrontMiddleBackQueue* obj, int val) {
- insert(obj,obj->len/2,val);
- }
-
- void frontMiddleBackQueuePushBack(FrontMiddleBackQueue* obj, int val) {
- insert(obj,obj->len,val);
- }
-
- int frontMiddleBackQueuePopFront(FrontMiddleBackQueue* obj) {
- return pop(obj,0);
- }
-
- int frontMiddleBackQueuePopMiddle(FrontMiddleBackQueue* obj) {
- return pop(obj,(obj->len-1)/2);
- }
-
- int frontMiddleBackQueuePopBack(FrontMiddleBackQueue* obj) {
- return pop(obj, obj->len-1);
- }
-
- void frontMiddleBackQueueFree(FrontMiddleBackQueue* obj) {
- free(obj);
- }
-
- /**
- * Your FrontMiddleBackQueue struct will be instantiated and called as such:
- * FrontMiddleBackQueue* obj = frontMiddleBackQueueCreate();
- * frontMiddleBackQueuePushFront(obj, val);
-
- * frontMiddleBackQueuePushMiddle(obj, val);
-
- * frontMiddleBackQueuePushBack(obj, val);
-
- * int param_4 = frontMiddleBackQueuePopFront(obj);
-
- * int param_5 = frontMiddleBackQueuePopMiddle(obj);
-
- * int param_6 = frontMiddleBackQueuePopBack(obj);
-
- * frontMiddleBackQueueFree(obj);
- */
运行结果

?2,链表实现
1,设计链表结构,链表维持一个头节点和尾结点,头节点始终在最前面并且头结点的data存储整个队列的节点数,尾结点始终是最后一个节点
2,设计插入节点函数和删除节点函数,push和pop操作只需要根据不同场景传入不同的参数即可完成统一的操作
- typedef struct tag_Node {
- int data;
- struct tag_Node* next, *prev;
- }Node;
-
-
- typedef struct {
- Node* front;
- Node* rear;
- } FrontMiddleBackQueue;
-
-
- FrontMiddleBackQueue* frontMiddleBackQueueCreate() {
- FrontMiddleBackQueue* que = (FrontMiddleBackQueue *)malloc(sizeof(FrontMiddleBackQueue));
- que->front = (Node *)malloc(sizeof(Node));
- que->rear = (Node *)malloc(sizeof(Node));
- que->front->data = 0;
- que->front->next = NULL;
- que->rear->data = 0;
- que->rear->next = NULL;
- que->front->next = que->rear;
- que->rear->prev = que->front;
-
- return que;
- }
-
- void AddNode(FrontMiddleBackQueue* obj, Node *cur, int val)
- {
- Node* addNode = (Node *)malloc(sizeof(Node));
- addNode->data = val;
- addNode->prev = cur->prev;
- addNode->next = cur;
-
- cur->prev->next = addNode;
- cur->prev = addNode;
-
- obj->front->data++;
- return;
- }
-
- Node* GetMiddleNode(FrontMiddleBackQueue* obj, bool isAdd)
- {
- Node* tmp = obj->front->next;
-
- int len = isAdd ? (obj->front->data / 2) : ((obj->front->data - 1) / 2);
- for (int i = 0; i < len; i++) {
- tmp = tmp->next;
- }
- return tmp;
- }
-
- void frontMiddleBackQueuePushFront(FrontMiddleBackQueue* obj, int val) {
- AddNode(obj, obj->front->next, val);
- return;
- }
-
- void frontMiddleBackQueuePushMiddle(FrontMiddleBackQueue* obj, int val) {
- AddNode(obj, GetMiddleNode(obj, true), val);
- return;
- }
-
- void frontMiddleBackQueuePushBack(FrontMiddleBackQueue* obj, int val) {
- AddNode(obj, obj->rear, val);
- return;
- }
-
- int RemoveNode(FrontMiddleBackQueue* obj, Node* cur)
- {
- if (obj->front->data == 0) {
- return -1;
- }
- cur->next->prev = cur->prev;
- cur->prev->next = cur->next;
-
- obj->front->data--;
- int item = cur->data;
- free(cur);
- return item;
- }
-
- int frontMiddleBackQueuePopFront(FrontMiddleBackQueue* obj) {
- return RemoveNode(obj, obj->front->next);
- }
-
- int frontMiddleBackQueuePopMiddle(FrontMiddleBackQueue* obj) {
- return RemoveNode(obj, GetMiddleNode(obj, false));
- }
-
- int frontMiddleBackQueuePopBack(FrontMiddleBackQueue* obj) {
- return RemoveNode(obj, obj->rear->prev);
- }
-
- void frontMiddleBackQueueFree(FrontMiddleBackQueue* obj) {
- while (RemoveNode(obj, obj->front->next) != -1);
- free(obj->front);
- free(obj->rear);
- free(obj);
- return;
- }
-
- /**
- * Your FrontMiddleBackQueue struct will be instantiated and called as such:
- * FrontMiddleBackQueue* obj = frontMiddleBackQueueCreate();
- * frontMiddleBackQueuePushFront(obj, val);
-
- * frontMiddleBackQueuePushMiddle(obj, val);
-
- * frontMiddleBackQueuePushBack(obj, val);
-
- * int param_4 = frontMiddleBackQueuePopFront(obj);
-
- * int param_5 = frontMiddleBackQueuePopMiddle(obj);
-
- * int param_6 = frontMiddleBackQueuePopBack(obj);
-
- * frontMiddleBackQueueFree(obj);
- */
运行结果:

?总结
到此这篇关于C语言设计前中后队列的文章就介绍到这了,更多相关C语言设计前中后队列内容请搜索w3xue以前的文章或继续浏览下面的相关文章希望大家以后多多支持w3xue!