经验首页 前端设计 程序设计 Java相关 移动开发 数据库/运维 软件/图像 大数据/云计算 其他经验
当前位置:技术经验 » 程序设计 » C 语言 » 查看文章
C语言数据结构二叉树之堆的实现和堆排序详解
来源:jb51  时间:2022/4/11 20:17:01  对本文有异议

一、本章重点

  • 堆的介绍
  • 堆的接口实现
  • 堆排序

二、堆

2.1堆的介绍

一般来说,堆在物理结构上是连续的数组结构,在逻辑结构上是一颗完全二叉树。

但要满足

  • 每个父亲节点的值都得大于孩子节点的值,这样的堆称为大堆。
  • 每个父亲节点的值都得小于孩子节点的值,这样的堆称为小堆。

那么以下就是一个小堆。

百度百科:

堆的定义如下:n个元素的序列{k1,k2,ki,…,kn}当且仅当满足下关系时,称之为堆。

若将和此次序列对应的一维数组(即以一维数组作此序列的存储结构)看成是一个完全二叉树,则堆的含义表明,完全二叉树中所有非终端结点的值均不大于(或不小于)其左、右孩子结点的值。由此,若序列{k1,k2,…,kn}是堆,则堆顶元素(或完全二叉树的根)必为序列中n个元素的最小值(或最大值)。 

下面序列是堆的是( )。 

A.97,56,38,66,23,42,12 //不是大堆也不是小堆,即不是堆。

B.23,86,48,3,35,39,42 //不是大堆也不是小堆,即不是堆。

C.05,56,20,23,40,38,29  //不是大堆也不是小堆,即不是堆。

D.05,23,16,68,94,72,71,73  //是小堆

只有D是堆而且是小堆,因此答案选D。

D的逻辑结构:

 父亲节点和孩子节点的数组下标有以下关系:

  • left_child=(parent+1)*2
  • right_child=(parent+2)*2
  • parent=(child-1)/2(这里的child左孩子和右孩子都适用)

以上就不做证明了,不过我们可以验证一下,以上图D的逻辑结构为例,16的parent下标是2,72的下标是5,71的下标是6,满足left_child=(parent+1)*2、right_child=(parent+2)*2、parent=(child-1)/2。

有序一定是堆,堆不一定有序。

同时堆顶的数组是整个数组最大的数或者整个数组最小的数。

2.2堆的接口实现

第一件事我们就是要创建堆,实际就是创建一个数组,这里用动态数组。

  1. typedef int HPDataType;
  2. typedef struct Heap
  3. {
  4. HPDataType* a;
  5. size_t size;
  6. size_t capacity;
  7. }HP;

堆创建好之后,我们需要对它进行初始化。

第一个接口:

  1. void HeapInit(HP* php);

轻车熟路,将堆中的a置为NULL,size和capacity置为0。

或者这里可以设置capacity不为0的初始值也是可以的。

参考代码:

  1. void HeapInit(HP* php)
  2. {
  3. assert(php);
  4. php->a = NULL;
  5. php->size = php->capacity = 0;
  6. }

我们对堆进行初始化之后,也要在最后销毁堆。

第二个接口:

  1. void HeapDestroy(HP* php)

销毁堆,即销毁一个动态数组

参考代码:

  1. void HeapDestroy(HP* php)
  2. {
  3. assert(php);
  4. free(php->a);
  5. php->a = NULL;
  6. php->size = php->capacity = 0;
  7. }

现在我们可以考虑往堆中插入数据了,要求插入新元素之后还是堆。

第三个接口:

  1. void HeapPush(HP* php, HPDataType x)

堆没有要求在哪个位置插入新元素,可以在任意的位置插入新元素,但要保证插入新元素之后还是堆。

由于数组在头部还是在中间位置的插入复杂度是O(N),并且插入后不一定是堆了。

因此我们考虑的是直接在数组尾部插入新元素,然后用一个函数去调整数组的顺序使得它还是一个堆。

那么核心代码就是这个调整算法。

先来看这一个堆,插入新元素后该如何进行调整。

 我们在数组的最后插入22,原堆是一个小堆,此时我们需要从下往上去调整各个父亲节点,使得该堆还是一个小堆。

换句话说:我们只需要调整下面有彩色的节点顺序。

交换过程:如果孩子节点小于父亲节点,那么将它们交换,然后迭代。

如果孩子节点大于父亲节点就跳出循环。

迭代过程:将父亲节点的下标赋值给孩子节点的下标,然后重新计算父亲节点的下标,计算方法:parent=(child-1)/2。

参考代码:

  1. void AdjustUp(HPDataType* a, size_t child)
  2. {
  3. size_t parent = (child - 1) / 2;
  4. while (child > 0)
  5. {
  6. //如果孩子小于父亲,则交换
  7. if (a[child] < a[parent])
  8. {
  9. Swap(&a[child], &a[parent]);
  10. child = parent;
  11. parent = (child - 1) / 2;
  12. }
  13. //孩子大于父亲,则结束调整
  14. else
  15. {
  16. break;
  17. }
  18. }
  19. }
  1. void HeapPush(HP* php, HPDataType x)
  2. {
  3. assert(php);
  4. //动态数组,空间不够要扩容
  5. if (php->size == php->capacity)
  6. {
  7. size_t newCapacity = php->capacity == 0 ? 4 : php->capacity * 2;
  8. HPDataType* tmp = realloc(php->a, sizeof(HPDataType)* newCapacity);
  9. if (tmp == NULL)
  10. {
  11. printf("realloc failed\n");
  12. exit(-1);
  13. }
  14. php->a = tmp;
  15. php->capacity = newCapacity;
  16. }
  17. //尾插数据
  18. php->a[php->size] = x;
  19. ++php->size;
  20. // 向上调整,控制保持是一个小堆
  21. AdjustUp(php->a, php->size - 1);
  22. }

上面是多个数据的插入,那么如果插入第一个数据,这个函数还能帮助我们把数据插入堆中吗?

答案是肯定的。

既然有Push数据到堆,自然有从堆中删除元素了。

这里的删除不同于栈和队列的删除,这里指的是将堆顶的数据删除,删除之后堆还是一个堆。为什么只实现删堆顶的数据,因为简单实用,这个接口是为后面的堆排序做准备的。

第四个接口:

  1. void HeapPop(HP* php)

思路比较简单:将数组第一个元素删除,然后保持它还是一个小堆。

怎么删除第一个数据呢?

这里的考虑是将数组第一个元素和数组最后一个交换,交换之后尾删掉最后一个元素,达成删除第一个元素的效果,复杂度是O(N),这里可以提一下,这种头删的方式是改变了数组元素的相对顺序的。

删除之后我们要做调整,使得堆还是小堆。

那么怎么调整呢?

以下是一个小堆

 头删之后

 如何调整它,使得它还是一个小堆?

这里的思路是:向下调整算法,首先parent=73,然后选出它子节点最小的值,然后它们之间交换,交换之后,将子节点看作新的父亲节点,继续向下调整,直到父亲节点的左孩子不存在。

参考代码:

  1. void AdjustDown(HPDataType* a, size_t size, size_t root)
  2. {
  3. size_t parent = root;
  4. size_t child = parent * 2 + 1;
  5. while (child < size)
  6. {
  7. // 1、选出左右孩子中小的那个
  8. if (child + 1 < size && a[child+1] < a[child])
  9. {
  10. ++child;
  11. }
  12. // 2、如果孩子小于父亲,则交换,并继续往下调整
  13. if (a[child] < a[parent])
  14. {
  15. Swap(&a[child], &a[parent]);
  16. parent = child;
  17. child = parent * 2 + 1;
  18. }
  19. else
  20. {
  21. break;
  22. }
  23. }
  24. }

这里需要注意的是,为什么循环的结束条件不是右孩子不存在呢?

因为右孩子不存在时,也可能要进行交换。

比如:

 还需要注意的是左孩子存在右孩子不一定存在

  1. if (a[child+1] > a[child])
  2. {
  3. ++child;
  4. }

直接这样写a[child+1]可能会越界,因此要加上child + 1 < size,保证child + 1 <= size-1。

参考代码:

  1. void HeapPop(HP* php)
  2. {
  3. assert(php);
  4. assert(php->size > 0);
  5. //将数组第一个元素和最后一个元素交换然后删除最后一个元素,达到头删的目的。
  6. Swap(&php->a[0], &php->a[php->size - 1]);
  7. --php->size;
  8. //向下调整算法
  9. AdjustDown(php->a, php->size, 0);
  10. }

其他接口补充:

由于比较简单,理解起来不费劲,因此这里直接给出。

参考代码:

  1. bool HeapEmpty(HP* php)//判断堆是否为空
  2. {
  3. assert(php);
  4. return php->size == 0;
  5. }
  6. size_t HeapSize(HP* php)//堆的元素个数
  7. {
  8. assert(php);
  9. return php->size;
  10. }
  11. HPDataType HeapTop(HP* php)//取堆顶数据
  12. {
  13. assert(php);
  14. assert(php->size > 0);
  15. return php->a[0];
  16. }

三、堆排序

 堆排序:利用堆顶节点是整个数组的最大值或者最小值的特点,可以达到排序的目的。

比如我们要将1、5、2、4、8、6、10排成升序

可以将这几个元素依次入堆,使得这些数据变成小堆。

然后我们可以取堆的第一个元素,它是整个数组最小的元素,要排升序,那么我们就需要将它排在第一个位置,然后删除堆顶元素,由于我们的删除接口的作用是:删除堆顶元素,并保持堆还是小堆,那么我们调用删除接口之后,再取堆顶元素,将它排在第二个位置,依次继续下去,我们就能将这些数据排成升序了。

参考代码:

  1. void HeapSort(int* a, int size)
  2. {
  3. HP hp;
  4. HeapInit(&hp);
  5. //建小堆
  6. for (int i = 0; i < size; ++i)
  7. {
  8. HeapPush(&hp, a[i]);
  9. }
  10. //不断取堆顶元素进行排序
  11. size_t j = 0;
  12. while (!HeapEmpty(&hp))
  13. {
  14. a[j] = HeapTop(&hp);
  15. j++;
  16. HeapPop(&hp);
  17. }
  18. //销毁堆,防止内存泄露
  19. HeapDestroy(&hp);
  20. }

这里的堆排序的空间复杂度是O(N),因为在堆区开辟了一个N个元素大小的堆空间。

堆排序看起来挺复杂的,那么它的时间复杂度是什么呢?

建小堆:0(N)

HeapPop()一次执行的是:头删堆顶元素(O(1)),然后依次向下比较,比较的次数是高度次,因为是完全二叉树,比较的时间复杂度是O(logN)。

因此执行一次HeapPop的时间复杂度是O(logN)。

那么不断取堆顶元素进行排序,取了N个元素,调用了N次HeapPop(),时间复杂度是O(N*logN)。

总的时间复杂度是O(N)+O(N*logN),当N很大时,加的O(N)可以忽略。

实际时间复杂就是:O(N*logN)

空间复杂度:O(N)

那么堆排序的时间复杂度是O(N*logN)。

相比于冒泡排序的O(N*N)。

堆排序显然效率更高。

如果N等于100万,冒泡要执行1万亿次,而堆排序执行2千万次,效率可想而知!

到此这篇关于C语言数据结构二叉树之堆的实现和堆排序详解的文章就介绍到这了,更多相关C语言 堆排序内容请搜索w3xue以前的文章或继续浏览下面的相关文章希望大家以后多多支持w3xue!

 友情链接:直通硅谷  点职佳  北美留学生论坛

本站QQ群:前端 618073944 | Java 606181507 | Python 626812652 | C/C++ 612253063 | 微信 634508462 | 苹果 692586424 | C#/.net 182808419 | PHP 305140648 | 运维 608723728

W3xue 的所有内容仅供测试,对任何法律问题及风险不承担任何责任。通过使用本站内容随之而来的风险与本站无关。
关于我们  |  意见建议  |  捐助我们  |  报错有奖  |  广告合作、友情链接(目前9元/月)请联系QQ:27243702 沸活量
皖ICP备17017327号-2 皖公网安备34020702000426号